Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling

Abstract

In genetic screens for new endocytosis genes in Caenorhabditis elegans we identified RME-1, a member of a conserved class of Eps15-homology (EH)-domain proteins. Here we show that RME-1 is associated with the periphery of endocytic organelles, which is consistent with a direct role in endocytic transport. Endocytic defects in rme-1 mutants indicate that the protein is likely to have a function in endocytic recycling. Evidence from studies of mammalian RME-1 also points to a function for RME-1 in recycling, specifically in the exit of membrane proteins from recycling endosomes. These studies show a conserved function in endocytic recycling for the RME-1 family of EH proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: rme-1 mutant phenotypes.
Figure 2: Gene structure and protein product of rme-1.
Figure 3: Subcellular localization of RME-1 in wild-type and mutant strains.
Figure 4: Intestinal cells of rme-1 mutants are defective in transport of basolateral fluid-phase markers.

Similar content being viewed by others

References

  1. Mellman, I. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625 (1996).

    Article  CAS  Google Scholar 

  2. Mukherjee, S., Ghosh, R. N. & Maxfield, F. R. Endocytosis. Physiol. Rev. 77, 759–803 (1997).

    Article  CAS  Google Scholar 

  3. Grant, B. & Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311–4326 (1999).

    Article  CAS  Google Scholar 

  4. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    Article  CAS  Google Scholar 

  5. Montgomery, M. K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 15502–15507 (1998).

    Article  CAS  Google Scholar 

  6. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  7. Mintz, L. et al. EHD1 — an EH-domain-containing protein with a specific expression pattern. Genomics 59, 66–76 (1999).

    Article  CAS  Google Scholar 

  8. Pohl, U. et al. EHD2, EHD3, and EHD4 encode novel members of a highly conserved family of EH domain-containing proteins. Genomics 63, 255–262 (2000).

    Article  CAS  Google Scholar 

  9. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop — a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430–434 (1990).

    Article  Google Scholar 

  10. Lupas, A. Prediction and analysis of coiled-coil structures. Methods Enzymol. 266, 513–525 (1996).

    Article  CAS  Google Scholar 

  11. Santolini, E., Salcini, A. E., Kay, B. K., Yamabhai, M. & Di Fiore, P. P. The EH network. Exp. Cell Res. 253, 186–209 (1999).

    Article  CAS  Google Scholar 

  12. Page, L. J., Sowerby, P. J., Lui, W. W. & Robinson, M. S. Gamma-synergin: an EH domain-containing protein that interacts with gamma-adaptin. J. Cell Biol. 146, 993–1004 (1999).

    Article  CAS  Google Scholar 

  13. Haider, N. B. et al. Evaluation and molecular characterization of EHD1, a candidate gene for Bardet-Biedl syndrome 1 (BBS1). Gene 240, 227–232 (1999).

    Article  CAS  Google Scholar 

  14. Clokey, G. V. & Jacobson, L. A. The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech. Ageing Dev. 35, 79–94 (1986).

    Article  CAS  Google Scholar 

  15. Kostich, M., Fire, A. & Fambrough, D. M. Identification and molecular-genetic characterization of a LAMP/CD68-like protein from Caenorhabditis elegans. J. Cell Sci. 113, 2595–2606 (2000).

    CAS  PubMed  Google Scholar 

  16. Fares, H. & Greenwald, I. Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nature Genet. 28, 64–68 (2001).

    CAS  PubMed  Google Scholar 

  17. Vida, T. A. & Emr, S. D. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128, 779–792 (1995).

    Article  CAS  Google Scholar 

  18. Besterman, J. M., Airhart, J. A., Woodworth, R. C. & Low, R. B. Exocytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation. J. Cell Biol. 91, 716–727 (1981).

    Article  CAS  Google Scholar 

  19. Bomsel, M., Prydz, K., Parton, R. G., Gruenberg, J. & Simons, K. Endocytosis in filter-grown Madin–Darby canine kidney cells. J. Cell Biol. 109, 3243–3258 (1989).

    Article  CAS  Google Scholar 

  20. Gagescu, R. et al. The recycling endosome of Madin–Darby canine kidney cells is a mildly acidic compartment rich in raft components. Mol. Biol. Cell 11, 2775–2791 (2000).

    Article  CAS  Google Scholar 

  21. Clark, S. G., Shurland, D. L., Meyerowitz, E. M., Bargmann, C. I. & van der Bliek, A. M. A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc. Natl Acad. Sci. USA 94, 10438–10443 (1997).

    Article  CAS  Google Scholar 

  22. Apodaca, G., Enrich, C. & Mostov, K. E. The calmodulin antagonist, W-13, alters transcytosis, recycling, and the morphology of the endocytic pathway in Madin–Darby canine kidney cells. J. Biol. Chem. 269, 19005–19013 (1994).

    CAS  PubMed  Google Scholar 

  23. van Weert, A. W., Geuze, H. J., Groothuis, B. & Stoorvogel, W. Primaquine interferes with membrane recycling from endosomes to the plasma membrane through a direct interaction with endosomes which does not involve neutralisation of endosomal pH nor osmotic swelling of endosomes. Eur. J. Cell Biol. 79, 394–399 (2000).

    Article  CAS  Google Scholar 

  24. Lin, S. X., Grant B., Hirsh D. & Maxfield F. R. . Rme-1 regulates the distribution and function of the endocytic recycling compartment in mammalian cells. Nature Cell Biol. 3, XX (2001).

    Google Scholar 

  25. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Williams, B. D. Genetic mapping with polymorphic sequence-tagged sites. Methods Cell Biol. 48, 81–96 (1995).

    Article  CAS  Google Scholar 

  27. Grant, B. & Greenwald, I. Structure, function, and expression of SEL-1, a negative regulator of LIN-12 and GLP-1 in C. elegans. Development 124, 637–644 (1997).

    CAS  PubMed  Google Scholar 

  28. Rosenbluth, R. E., Cuddeford, C. & Baillie, D. L. Mutagenesis in Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 r of gamma-radiation. Genetics 109, 493–511 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gu, J., Stephenson, C. G. & Iadarola, M. J. Recombinant proteins attached to a nickel-NTA column: Use in affinity purification of antibodies. Biotechniques 17, 257–262 (1994).

    CAS  PubMed  Google Scholar 

  30. Bettinger, J. C., Lee, K. & Rougvie, A. E. Stage-specific accumulation of the terminal differentiation factor LIN-29 during Caenorhabditis elegans development. Development 122, 2517–2527 (1996).

    CAS  PubMed  Google Scholar 

  31. Hall, D. H. et al. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev. Biol. 212, 101–123 (1999).

    Article  CAS  Google Scholar 

  32. Fire, A. Integrative transformation of Caenorhabditis elegans. EMBO J. 5, 2673–2680 (1986).

    Article  CAS  Google Scholar 

  33. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Pedraza and W. Pryzlecki for technical assistance; H. Fares, V. Irikura, Y. Kohara, X. Li and A. Melendez for reagents and strains; and Q. Al-Aqwati, H. Fares, I. Greenwald, F. Maxfield and H. Wilkinson for discussions during this work and for comments on this manuscript. We also thank H. Fares and I. Greenwald for the gift of rme-1 mutant strains. Many of the strains used in this work were provided by the Caenorhabditis Genetics Center. This work was supported by a grant from NIH to D.H.H., by a NIH National Service Research Award to B.G. and by a March of Dimes Grant to D.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barth Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, B., Zhang, Y., Paupard, MC. et al. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat Cell Biol 3, 573–579 (2001). https://doi.org/10.1038/35078549

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078549

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing