Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

δ-Tubulin and ɛ-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function

Abstract

The centrosome organizes microtubules, which are made up of α-tubulin and β-tubulin, and contains centrosome-bound γ-tubulin, which is involved in microtubule nucleation. Here we identify two new human tubulins and show that they are associated with the centrosome. One is a homologue of the Chlamydomonas δ-tubulin Uni3, and the other is a new tubulin, which we have named ɛ-tubulin. Localization of δ-tubulin and ɛ-tubulin to the centrosome is independent of microtubules, and the patterns of localization are distinct from each other and from that of γ-tubulin. δ-Tubulin is found in association with the centrioles, whereas ɛ-tubulin localizes to the pericentriolar material. ɛ-Tubulin exhibits a cell-cycle-specific pattern of localization, first associating with only the older of the centrosomes in a newly duplicated pair and later associating with both centrosomes. ɛ-Tubulin thus distinguishes the old centrosome from the new at the level of the pericentriolar material, indicating that there may be a centrosomal maturation event that is marked by the recruitment of ɛ-tubulin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of human tubulin sequences.
Figure 2: Localization of centrin, γ-tubulin, δ-tubulin and ɛ-tubulin to the centrosome.
Figure 3: Sucrose-gradient sedimentation of human tubulins.
Figure 4: Cell-cycle localization of ɛ-tubulin in synchronized cell populations.
Figure 5: ɛ-Tubulin localizes preferentially to the old centrosome.
Figure 6: Centrosomal nucleation of microtubules is independent of ɛ-tubulin localization and centrosome separation.

Similar content being viewed by others

References

  1. Oakley, B. R., Oakley, C. E., Yoon, Y. & Jung, M. K. Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61, 1289– 1301 (1990).

    Article  CAS  Google Scholar 

  2. Stearns, T., Evans, L. & Kirschner, M. Gamma-tubulin is a highly conserved component of the centrosome. Cell 65, 825– 836 (1991).

    Article  CAS  Google Scholar 

  3. Zheng, Y., Jung, M. K. & Oakley, B. R. Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell 65, 817–823 ( 1991).

    Article  CAS  Google Scholar 

  4. Stearns, T. & Kirschner, M. In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin. Cell 76, 623–637 ( 1994).

    Article  CAS  Google Scholar 

  5. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378, 578–583 ( 1995).

    Article  CAS  Google Scholar 

  6. Detraves, C. et al. Protein complexes containing gamma-tubulin are present in mammalian brain microtubule protein preparations. Cell Motil. Cytoskeleton 36, 179–189 ( 1997).

    Article  CAS  Google Scholar 

  7. Murphy, S. M., Urbani, L. & Stearns, T. The mammalian gamma-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J. Cell Biol. 141, 663–674 (1998).

    Article  CAS  Google Scholar 

  8. Oegema, K. et al. Characterization of two related Drosophila gamma-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 ( 1999).

    Article  CAS  Google Scholar 

  9. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B. & Agard, D. A. Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature 378, 638 –640 (1995).

    Article  CAS  Google Scholar 

  10. Vogel, J. M., Stearns, T., Rieder, C. L. & Palazzo, R. E. Centrosomes isolated from Spisula solidissima oocytes contain rings and an unusual stoichiometric ratio of alpha/beta tubulin. J Cell Biol 137, 193–202 ( 1997).

    Article  CAS  Google Scholar 

  11. Gould, R. R. & Borisy, G. G. The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J. Cell Biol. 73, 601–615 ( 1977).

    Article  CAS  Google Scholar 

  12. Dutcher, S. K. & Trabuco, E. C. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. Mol. Biol. Cell 9, 1293–1308 (1998).

    Article  CAS  Google Scholar 

  13. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199– 203 (1998).

    Article  CAS  Google Scholar 

  14. Nogales, E., Whittaker, M., Milligan, R. A. & Downing, K. H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  CAS  Google Scholar 

  15. Knop, M., Pereira, G., Geissler, S., Grein, K. & Schiebel, E. The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication. EMBO J. 16, 1550–1564 ( 1997).

    Article  CAS  Google Scholar 

  16. Geissler, S. et al. The spindle pole body component Spc98p interacts with the gamma-tubulin like Tub4p of Saccharomyces cerevisiae at the sites of microtubule attachment. EMBO J. 15, 3899– 3911 (1996).

    Article  CAS  Google Scholar 

  17. Burns, R. G. Identification of two new members of the tubulin family. Cell Motil. Cytoskeleton 31, 255–258 (1995).

    Article  CAS  Google Scholar 

  18. Julian, M. et al. Gamma-tubulin participates in the formation of the midbody during cytokinesis in mammalian cells. J. Cell Sci. 105, 145–156 (1993).

    CAS  PubMed  Google Scholar 

  19. Lajoie-Mazenc, I. et al. Recruitment of antigenic gamma-tubulin during mitosis in animal cells: presence of gamma-tubulin in the mitotic spindle. J. Cell Sci. 107, 2825–2837 ( 1994).

    CAS  PubMed  Google Scholar 

  20. Albrecht-Buehler, G. & Bushnell, A. The ultrastructure of primary cilia in quiescent 3T3 cells. Exp. Cell Res. 126, 427–437 (1980).

    Article  CAS  Google Scholar 

  21. Kochanski, R. S. & Borisy, G. G. Mode of centriole duplication and distribution. J. Cell Biol. 110, 1599–1605 (1990).

    Article  CAS  Google Scholar 

  22. Rieder, C. L. & Borisy, G. G. The centrosome cycle in PtK 2 cells: asymmetric distribution and structural changes in the pericentriolar materiel. Biol. Cell 44, 117– 132 (1982).

    Google Scholar 

  23. Piperno, G. & Fuller, M. T. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J. Cell Biol. 101, 2085–2094 (1985).

    Article  CAS  Google Scholar 

  24. Lange, B. M. & Gull, K. A molecular marker for centriole maturation in the mammalian cell cycle. J. Cell Biol. 130, 919–927 (1995).

    Article  CAS  Google Scholar 

  25. Nogales, E., Downing, K. H., Amos, L. A. & Lowe, J. Tubulin and FtsZ form a distinct family of GTPases. Nature Struct. Biol. 5, 451–458 ( 1998).

    Article  CAS  Google Scholar 

  26. Frankel, S. & Mooseker, M. S. The actin-related proteins. Curr. Opin. Cell Biol. 8, 30–37 (1996).

    Article  CAS  Google Scholar 

  27. Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385, 265–269 ( 1997).

    Article  CAS  Google Scholar 

  28. Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107– 128 (1992).

    Article  CAS  Google Scholar 

  29. Lacey, K. R., Jackson, P. K. & Stearns, T. Cyclin-dependent kinase control of centrosome duplication . Proc. Natl Acad. Sci. USA 96, 2817– 2822 (1999).

    Article  CAS  Google Scholar 

  30. Freed, E. et al. The SKP1 and CUL1 ubiquitin ligase components localize to the centrosome and regulate the centrosome duplication cycle. Genes Dev. 13, 2242–2257 ( 1999).

    Article  CAS  Google Scholar 

  31. Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589 (1998).

    Article  CAS  Google Scholar 

  32. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate- phenol-chloroform extraction . Anal. Biochem. 162, 156– 159 (1987).

    Article  CAS  Google Scholar 

  33. Harlow, E. & Lane, D. Antibodies: a Laboratory Manual (Cold Spring Harb. Lab. Press, Cold Spring Harbor, NY, 1988 ).

    Google Scholar 

  34. Blose, S. H., Meltzer, D. I. & Feramisco, J. R. 10-nm filaments are induced to collapse in living cells microinjected with monoclonal and polyclonal antibodies against tubulin . J. Cell Biol. 98, 847– 858 (1984).

    Article  CAS  Google Scholar 

  35. Sanders, M. A. & Salisbury, J. L. Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J. Cell Biol. 124, 795–805 (1994).

    Article  CAS  Google Scholar 

  36. Mariani, B. D., Slate, D. L. & Schimke, R. T. S phase-specific synthesis of dihydrofolate reductase in Chinese hamster ovary cells. Proc. Natl Acad. Sci. USA 78, 4985–4989 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Sidow for advice on sequence comparisons, and S. Murphy, K. Lacey and J.C. Zabala for comments on the manuscript. This work was supported by grants to T.S. from the NIH (GM52022) and from the Searle Scholars Foundation.

Correspondence and requests for materials should be addressed to T.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Stearns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, P., Stearns, T. δ-Tubulin and ɛ-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nat Cell Biol 2, 30–35 (2000). https://doi.org/10.1038/71350

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing