Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts

Abstract

Microtubules are dynamic polymers that move stochastically between periods of growth and shrinkage, a property known as dynamic instability. Here, to investigate the mechanisms regulating microtubule dynamics in Xenopus egg extracts, we have cloned the complementary DNA encoding the microtubule-associated protein XMAP215 and investigated the function of the XMAP215 protein. Immunodepletion of XMAP215 indicated that it is a major microtubule-stabilizing factor in Xenopus egg extracts. During interphase, XMAP215 stabilizes microtubules primarily by opposing the activity of the destabilizing factor XKCM1, a member of the kinesin superfamily. These results indicate that microtubule dynamics in Xenopus egg extracts are regulated by a balance between a stabilizing factor, XMAP215, and a destabilizing factor, XKCM1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: XMAP215 amino-acid sequence and homology to other members of the protein family to which it belongs.
Figure 2: Immunolocalization of XMAP215 protein in XL177 cells.
Figure 3: XMAP215 depletion from Xenopus egg extracts.
Figure 4: XMAP215 is a major regulator of microtubule dynamics.
Figure 5: Readdition of purified XMAP215 to depleted extracts.
Figure 6: Inhibition of XKCM1 partially rescues the effect of XMAP215 depletion on the catastrophe frequency.
Figure 7: Spindle formation observed in control and XMAP215-depleted extracts.

Similar content being viewed by others

References

  1. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237– 242 (1984).

    Article  CAS  Google Scholar 

  2. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell. Dev. Biol. 13, 83–117 (1997).

    Article  CAS  Google Scholar 

  3. Walker, R. A. et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988).

    Article  CAS  Google Scholar 

  4. Cassimeris, L. Accessory protein regulation of microtubule dynamics throughout the cell cycle . Curr. Opin. Cell Biol. 11, 134– 141 (1999).

    Article  CAS  Google Scholar 

  5. Vasquez, R. J., Gard, D. L. & Cassimeris, L. XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover. J. Cell Biol. 127, 985–993 ( 1994).

    Article  CAS  Google Scholar 

  6. Vasquez, R. J., Gard, D. L. & Cassimeris, L. Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell Motil Cytoskel. 43, 310– 321 (1999).

    Article  CAS  Google Scholar 

  7. Andersen, S. S., Buendia, B., Dominguez, J. E., Sawyer, A. & Karsenti, E. Effect on microtubule dynamics of XMAP230, a microtubule-associated protein present in Xenopus laevis eggs and dividing cells. J. Cell Biol. 127, 1289 –1299 (1994).

    Article  CAS  Google Scholar 

  8. Andersen, S. S. & Karsenti, E. XMAP310: a Xenopus rescue-promoting factor localized to the mitotic spindle. J. Cell Biol. 139, 975–983 ( 1997).

    Article  CAS  Google Scholar 

  9. Belmont, L. D. & Mitchison, T. J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules . Cell 84, 623–631 (1996).

    Article  CAS  Google Scholar 

  10. Walczak, C. E., Mitchison, T. J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 (1996).

    Article  CAS  Google Scholar 

  11. Curmi, P. A. et al. The stathmin/tubulin interaction in vitro. J. Biol. Chem. 272, 25029–25036 ( 1997).

    Article  CAS  Google Scholar 

  12. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  Google Scholar 

  13. Howell, B., Larsson, N., Gullberg, M. & Cassimeris, L. Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. Mol. Biol. Cell 10, 105–118 (1999).

    Article  CAS  Google Scholar 

  14. Gard, D. L. & Kirschner, M. W. A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end. J. Cell Biol. 105, 2203–2215 (1987).

    Article  CAS  Google Scholar 

  15. Charrasse, S. et al. The TOGp protein is a new human microtubule-associated protein homologous to the Xenopus XMAP215. J. Cell Sci. 111 , 1371–1383 (1998).

    CAS  PubMed  Google Scholar 

  16. Fiona Cullen, C., Deák, P., Glover, D. M. & Ohkura, H. mini spindles: a gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J. Cell Biol. 146, 1005–1018 (1999).

    Article  Google Scholar 

  17. Matthews, L. R., Carter, P., Thierry-Mieg, D. & Kemphues, K. ZYG-9, a Caenorhabditis elegans protein required for microtubule organization and function, is a component of meiotic and mitotic spindle poles. J. Cell Biol. 141, 1159–1168 (1998).

    Article  CAS  Google Scholar 

  18. Wang, P. J. & Huffaker, T. C. Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139, 1271–1280 (1997).

    Article  CAS  Google Scholar 

  19. Nabeshima, K. et al. p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev. 9, 1572–1585 (1995).

    Article  CAS  Google Scholar 

  20. Nakaseko, Y., Nabeshima, K., Kinoshita, K. & Yanagida, M. Dissection of fission yeast microtubule associating protein p93Dis1: regions implicated in regulated localization and microtubule interaction. Genes Cells 1, 633–644 ( 1996).

    Article  CAS  Google Scholar 

  21. Ohkura, H. et al. Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis. EMBO J. 7, 1465– 1473 (1988).

    Article  CAS  Google Scholar 

  22. Charrasse, S. et al. Characterization of the cDNA and pattern of expression of a new gene over-expressed in human hepatomas and colonic tumors. Eur. J. Biochem. 234, 406–413 (1995).

    Article  CAS  Google Scholar 

  23. Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. III. The coding sequences of 40 new genes (KIAA0081-KIAA0120) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 2, 37–43 (1995).

    Article  CAS  Google Scholar 

  24. Andrade, M. A. & Bork, P. HEAT repeats in the Huntington’s disease protein. Nature Genet. 11 , 115–116 (1995).

    Article  CAS  Google Scholar 

  25. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. & Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89, 297–308 ( 1997).

    Article  CAS  Google Scholar 

  26. Aizawa, H. et al. Molecular cloning of a ubiquitously distributed microtubule-associated protein with Mr 190,000. J. Biol. Chem. 265, 13849–13855 (1990).

    CAS  PubMed  Google Scholar 

  27. Chapin, S. J. & Bulinski, J. C. Non-neuronal 210 x 10(3) Mr microtubule-associated protein (MAP4) contains a domain homologous to the microtubule-binding domains of neuronal MAP2 and tau. J. Cell Sci. 98, 27–36 ( 1991).

    CAS  PubMed  Google Scholar 

  28. Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E. & Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl Acad. Sci. USA 85, 4051–4055 (1988).

    Article  CAS  Google Scholar 

  29. West, R. R., Tenbarge, K. M. & Olmsted, J. B. A model for microtubule-associated protein 4 structure. Domains defined by comparisons of human, mouse, and bovine sequences. J. Biol. Chem. 266, 21886–21896 (1991).

    CAS  PubMed  Google Scholar 

  30. Tournebize, R. et al. Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J. 16, 5537–5549 (1997).

    Article  CAS  Google Scholar 

  31. Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362 (1999).

    Article  CAS  Google Scholar 

  32. Shiina, N., Moriguchi, T., Ohta, K., Gotoh, Y. & Nishida, E. Regulation of a major microtubule-associated protein by MPF and MAP kinase. EMBO J. 11, 3977– 3984 (1992).

    Article  CAS  Google Scholar 

  33. Diamantopoulos, G. S. et al. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J. Cell Biol. 144 , 99–112 (1999).

    Article  CAS  Google Scholar 

  34. Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999).

    Article  CAS  Google Scholar 

  35. Vaughan, K. T., Tynan, S. H., Faulkner, N. E., Echeverri, C. J. & Vallee, R. B. Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends. J. Cell Sci. 112, 1437–1447 (1999).

    CAS  PubMed  Google Scholar 

  36. Severin, F. F., Sorger, P. K. & Hyman, A. A. Kinetochores distinguish GTP from GDP forms of the microtubule lattice. Nature 388, 888– 891 (1997).

    Article  CAS  Google Scholar 

  37. Andersen, S. S. et al. Mitotic chromatin regulates phosphorylation of Stathmin/Op18 . Nature 389, 640–643 (1997).

    Article  CAS  Google Scholar 

  38. Verde, F., Dogterom, M., Stelzer, E., Karsenti, E. & Leibler, S. Control of microtubule dynamics and length by cyclin A- and cyclin B- dependent kinases in Xenopus egg extracts . J. Cell Biol. 118, 1097– 1108 (1992).

    Article  CAS  Google Scholar 

  39. Frohman, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl Acad. Sci. USA 85, 8998– 9002 (1988).

    Article  CAS  Google Scholar 

  40. Harlow, E. & Lane, D. Antibodies : a Laboratory Manual (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1988).

  41. Murray, A. W. in Xenopus laevis: Practical Uses in Cell and Molecular Biology (eds Kay, B. K. & Peng, H. B.) 581–605 (Academic, San Diego, 1991).

  42. Sawin, K. E. & Mitchison, T. J. Mitotic spindle assembly by two different pathways in vitro. J. Cell Biol. 112, 925–940 (1991).

    Article  CAS  Google Scholar 

  43. Field, C. M., Oegema, K., Zheng, Y., Mitchison, T. J. & Walczak, C. E. Purification of cytoskeletal proteins using peptide antibodies. Methods Enzymol. 298, 525– 541 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Senger for cell culture; D. Drechsel for help during protein purification; A. Shevchenko and A. Shevchenko for mass spectrometry analysis; A. Desai for stimulating discussions and advice; and A. Desai, I. Sassoon, P. Gönczy, K. Oegema, M. Rathman, M. Mavris and C. Gonzalez for critical reading of the manuscript. A.P. was supported by an EMBO long-term and an HSFPO long-term fellowship. K.K. was supported by an HFSPO long-term fellowship.

Correspondence and requests for materials should be addressed to A.A.H. The XMAP215 cDNA sequence has been submitted to EMBL Nucleotide Sequence Database under accession number AJ251130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Hyman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tournebize, R., Popov, A., Kinoshita, K. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2, 13–19 (2000). https://doi.org/10.1038/71330

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/71330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing