Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen

Abstract

In planta expression of recombinant antibodies recognizing pathogen-specific antigens has been proposed as a strategy for crop protection. We report the expression of fusion proteins comprising a Fusarium-specific recombinant antibody linked to one of three antifungal peptides (AFPs) as a method for protecting plants against fungal diseases. A chicken-derived single-chain antibody specific to antigens displayed on the Fusarium cell surface was isolated from a pooled immunocompetent phage display library. This recombinant antibody inhibited fungal growth in vitro when fused to any of the three AFPs. Expression of the fusion proteins in transgenic Arabidopsis thaliana plants conferred high levels of protection against Fusarium oxysporum f.sp. matthiolae, whereas plants expressing either the fungus-specific antibody or AFPs alone exhibited only moderate resistance. Our results demonstrate that antibody fusion proteins may be used as effective and versatile tools for the protection of crop plants against fungal infection.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Immunoblot of CWP from F. graminearum and F. oxysporum f.sp. matthiolae detected with the chicken-derived scFv antibody CWP2.
Figure 2: Structure of AFP-scFv fusion constructs.
Figure 3: Inhibitory effects of AFPs, scFv and AFP-scFv fusion proteins on the growth of Fusarium in vitro.
Figure 4: Immunofluorescence labeling of germinated tubes of F. graminearum with scFv antibodies and AFP-scFv fusions.
Figure 5: Expression levels of CWP2, AFPs and AFP-scFv fusions in transgenic A. thaliana plants.
Figure 6: Phenotype of transgenic A. thaliana plants infected with F. oxysporum (21 d.p.i) and with S. sclerotiorum (2 d.p.i.).

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Agrios, G.N. Plant Pathology, edn. 4, (Academic Press, San Diego, 1997).

    Google Scholar 

  2. 2

    Windels, C.E. Economic and social impacts of Fusarium head blight: changing farms and rural communities in the northern great plains. Phytopathology 90, 17–21 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Parry, D., Jenkinson, P. & Mcleod, L. Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol. 44, 207–238 (1995).

    Article  Google Scholar 

  4. 4

    Placinta, C.M., D'Mello, J.P.F. & Macdonald, A.M.C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 78, 21–37 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Hayes, A.W. Mycotoxins: a review of biological effects and their role in human diseases. Clin. Toxicol. 17, 45–83 (1980).

    CAS  Article  Google Scholar 

  6. 6

    Collinge, D.B. et al. Plant chitinases. Plant J. 3, 31–40 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Punja, Z.K. Genetic engineering of plants to enhance to resistance to fungal pathogens—a review of progress and future prospects. Can. J. Plant Pathol. 23, 216–235 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Grison, R. et al. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat. Biotechnol. 14, 643–646 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Shah, D.M. Genetic engineering for fungal and bacterial diseases. Curr. Opin. Biotechnol. 8, 208–214 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Ma, J.K. et al. Generation and assembly of secretory antibodies in plants. Science 268, 716–719 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Little, M., Kipriyanov, S.M., Le Gall, F. & Moldenhauer, G. Of mice and men: hybridoma and recombinant antibodies. Immunol. Today 21, 364–370. (2000).

    CAS  Article  Google Scholar 

  12. 12

    Giddings, G., Allison, G., Brooks, D. & Carter, A. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 18, 1151–1155 (2000).

    CAS  Article  Google Scholar 

  13. 13

    Jobling, S.A. et al. Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat. Biotechnol. 21, 77–80 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Schillberg, S., Zimmermann, S., Zhang, M.-Y. & Fischer, R. Antibody-based resistance to plant pathogens. Transgenic Res. 10, 1–12 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Tavladoraki, P. et al. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366, 469–472 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Voss, A. et al. Reduced virus infectivity in N. tabacum secreting a TMV-specific full size antibody. Mol. Breeding 1, 39–50 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Le Gall, F., Bove, J.M. & Garnier, M. Engineering of a single-chain variable-fragment (scFv) antibody specific for the stolbur phytoplasma (Mollicute) and its expression in Escherichia coli and tobacco plants. Appl. Environ. Microbiol. 64, 4566–4572 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Liu, S. & Anderson, J.A. Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop. Sci. 43, 760–766 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Liao, Y.-C., Kreuzaler, F., Fischer, R., Reisener, H.-J. & Tiburzy, R. Characterization of a wheat class Ib chitinase gene differentially induced in isogenic lines by infection with Puccinia graminis. Plant Science 103, 177–187 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Terras, F.R. et al. Small cysteine-rich anti-fungal proteins from radish: their role in host defense. Plant Cell 7, 573–588 (1995).

    CAS  Article  Google Scholar 

  21. 21

    Wnendt, S., Ulbrich, N. & Stahl, U. Cloning and nucleotide sequence of a cDNA encoding the anti-fungal- protein of Aspergillus giganteus and preliminary characterization of the native gene. Nucleic Acids Res. 18, 3987 (1990).

    CAS  Article  Google Scholar 

  22. 22

    Kathuria, S. et al. Efficacy of plant-produced recombinant antibodies against HCG. Hum. Reprod. 17, 2054–2061 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Clough, S.J. & Bent, A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Tierens, K.F. et al. Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiol. 125, 1688–1699 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Stewart, C.N. Jr. The utility of green fluorescent protein in transgenic plants. Plant Cell Rep. 20, 376–382 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Benhamou, N., Broglie, K., Broglie, R. & Chet, I. Antifungal effect of bean endochitinase on Rhizoctonia solani: ultrastructural changes and cytochemical aspects of chitin breakdown. Can. J. Microbiol. 39, 318–328 (1993).

    CAS  Article  Google Scholar 

  27. 27

    Thevissen, K. et al. Fungal membrane responses induced by plant defensins and thionins. J. Biol. Chem. 271, 15018–15025 (1997).

    Article  Google Scholar 

  28. 28

    Lacadena, J. et al. Characterization of the antifungal protein secreted by the mould Aspergillus giganteus. Arch. Biochem. Biophys. 324, 273–281 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Hiatt, E.E. 3rd, Hill, N.S. & Hiatt, E.N. Monoclonal antibodies incorporated into Neotyphodium coenophialum fungal cultures: inhibition of fungal growth and stability of antibodies. Fungal Genet. Biol. 33, 107–114 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Schoffelmeer, E.A., Klis, F.M., Sietsma, J.H. & Cornelissen, B.J. The cell wall of Fusarium oxysporum. Fungal Genet. Biol. 27, 275–282 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Thornton, C.R., Dewey, F.M. & Gilligan, C.A. Production and characterization of a monoclonal antibody raised against surface antigens from mycelium of Gaeumannomyces graminis var. tritici: Evidence for an extracellular polyphenol oxidase. Phytopathology 87, 123–131 (1997).

    CAS  Article  Google Scholar 

  32. 32

    Duvick, J.P., Rood, T., Rao, A.G. & Marshak, D.R. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J. Biol. Chem. 267, 18814–18820 (1992).

    CAS  PubMed  Google Scholar 

  33. 33

    Zhang, M. et al. GST fusion proteins cause false positives during selection of viral movement protein specific single chain antibodies. J. Virol. Methods 91, 139–147 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Hoogenboom, H.R. et al. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137 (1991).

    CAS  Article  Google Scholar 

  35. 35

    Whitlow, M. et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 6, 989–995 (1993).

    CAS  Article  Google Scholar 

  36. 36

    Gough, K.C. et al. Selection of phage antibodies to surface epitopes of Phytophthora infestans. J. Immunol. Methods 228, 97–108 (1999).

    CAS  Article  Google Scholar 

  37. 37

    Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning—A Laboratory Manual, edn. 3 (Cold Spring Harbor Press, Cold Spring Harbor, NY, 1996).

    Google Scholar 

  38. 38

    Reichel, C. et al. Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescence protein mutant in mono-and dicotyledonous plant cells. Proc. Natl. Acad. Sci. USA 93, 5888–5893 (1996).

    CAS  Article  Google Scholar 

  39. 39

    Rademacher, T. et al. An engineered phosphoenolpyruvate carboxylase redirects carbon and nitrogen flow in transgenic potato plants. Plant J. 32, 25–39 (2002).

    CAS  Article  Google Scholar 

  40. 40

    Reglinski, T. et al. Systemic acquired resistance to Sclerotinia sclerotiorum in kiwifruit vines. Physiol. Mol. Plant Pathol. 58, 111–118 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Aguilera, O., Ostolaza, H., Quiros, L.M. & Fierro, J.F. Permeabilizing action of an antimicrobial lactoferricin-derived peptide on bacterial and artificial membranes. FEBS Lett. 462, 273–277 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank N. Emans for fluorescence microscopy, S. Hellwig for fermentation of F. graminearum and S. Dorfmueller for valuable discussions. We also thank R. Twyman, P. Christou and N. Emans for critical reading of the manuscript. This project was supported by a state grant of Nordrhein-Westfalen to R.F.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu-Cai Liao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peschen, D., Li, HP., Fischer, R. et al. Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nat Biotechnol 22, 732–738 (2004). https://doi.org/10.1038/nbt970

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing