Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content

Abstract

Tocotrienols are the primary form of vitamin E in seeds of most monocot plants, including cereals such as rice and wheat. As potent antioxidants, tocotrienols contribute to the nutritive value of cereal grains in human and livestock diets. cDNAs encoding homogentisic acid geranylgeranyl transferase (HGGT), which catalyzes the committed step of tocotrienol biosynthesis, were isolated from barley, wheat and rice seeds. Transgenic expression of the barley HGGT in Arabidopsis thaliana leaves resulted in accumulation of tocotrienols, which were absent from leaves of nontransformed plants, and a 10- to 15-fold increase in total vitamin E antioxidants (tocotrienols plus tocopherols). Overexpression of the barley HGGT in corn seeds resulted in an increase in tocotrienol and tocopherol content of as much as six-fold. These results provide insight into the genetic basis for tocotrienol biosynthesis in plants and demonstrate the ability to enhance the antioxidant content of crops by introduction of an enzyme that redirects metabolic flux.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tocotrienol and tocopherol biosynthetic pathways.
Figure 2: Northern blot analysis of the expression of the barley gene encoding HGGT in leaves (L), roots (R) and seeds (S) of barley.
Figure 3: Phylogenetic analysis of HPT and HGGT amino acid sequences.
Figure 4: HPLC analysis of the tocopherol and tocotrienol composition of tobacco callus.
Figure 5: Mass spectra of α-tocotrienol and γ-tocotrienol from organic extracts of tobacco callus expressing the barley HGGT cDNA.
Figure 6: Tocopherol and tocotrienol content of Arabidopsis thaliana leaves and corn seeds expressing the barley HGGT cDNA.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Padley, F.B., Gunstone, F.D. & Harwood, J.L. in The Lipid Handbook, 2nd Edn. (eds. Gunstone, F.D., Harwood, J.L., and Padley, F.B.) 130 (Chapman & Hall, London, 1994).

    Google Scholar 

  2. Aitzetmüller, K. Antioxidative effects of Carum seeds. J. Am. Oil Chem. Soc. 74, 185 (1997).

    Article  Google Scholar 

  3. Kamal-Eldin, A. & Appelqvist, L.A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31, 671–701 (1996).

    Article  CAS  Google Scholar 

  4. Barnes, P.J. Cereal tocopherols. Dev. Food Sci. 5B, 1095–1100 (1983).

    CAS  Google Scholar 

  5. Peterson, D.M. & Qureshi, A.A. Genotype and environmental effects on tocols of barley and oats. Cereal Chem. 70, 157–162 (1993).

    Article  CAS  Google Scholar 

  6. Serbinova, E.A. & Packer, L. Antioxidant properties of α-tocopherol and α-tocotrienol. Methods Enzymol. 234, 354–366 (1994).

    Article  CAS  Google Scholar 

  7. Packer, L., Weber, S.U. & Rimbach, G. Molecular aspects of α-tocotrienol antioxidant action and cell signalling. J. Nutr. 131, 369S–373S (2001).

    Article  CAS  Google Scholar 

  8. Andlauer, W. & Fürst, P. Antioxidative power of phytochemicals with special reference to cereals. Cereal Foods World 43, 356–359 (1998).

    CAS  Google Scholar 

  9. Wang, L., Newman, R.K., Newman, C.W., Jackson, L.L. & Hofer, P.J. Tocotrienol and fatty acid composition of barley oil and their effects on lipid metabolism. Plant Foods Hum. Nutr. 43, 9–17 (1993).

    Article  CAS  Google Scholar 

  10. Suzuki, Y.J. et al. Structural and dynamic membrane properties of α-tocopherol and α-tocotrienol: implication to the molecular mechanism of their antioxidant potency. Biochemistry 32, 10692–10699 (1993).

    Article  CAS  Google Scholar 

  11. Theriault, A., Chao, J.-T., Wang, Q., Gapor, A. & Adeli, K. Tocotrienol: a review of its therapeutic potential. Clin. Biochem. 32, 309–319 (1999).

    Article  CAS  Google Scholar 

  12. Qureshi, A.A., Burger, W.C., Peterson, D.M. & Elson, C.E. The structure of an inhibitor of cholesterol biosynthesis isolated from barley. J. Biol. Chem. 261, 10544–10550 (1986).

    CAS  PubMed  Google Scholar 

  13. Parker, R.A., Pearce, B.C., Clark, R.W., Gordon, D.A. & Wright, J.J. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem. 268, 11230–11238 (1993).

    CAS  PubMed  Google Scholar 

  14. Raederstorff, D., Elste, V., Aebischer, C. & Weber, P. Effect of either γ-tocotrienol or a tocotrienol mixture on the plasma lipid profile in hamsters. Ann. Nutr. Metab. 46, 17–23 (2002).

    Article  CAS  Google Scholar 

  15. Elson, C.E. & Yu, S.G. The chemoprevention of cancer by mevalonate-derived con-stituents of fruits and vegetables. J. Nutr. 124, 607–614 (1994).

    Article  CAS  Google Scholar 

  16. Nesaretnam, K., Stephen, R., Dils, R. & Darbre, P. Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status. Lipids 33, 461–469 (1998).

    Article  CAS  Google Scholar 

  17. Schultz, G., Soll, J., Fiedler, E. & Schulze-Siebert, D. Synthesis of prenylquinones in chloroplasts. Physiol. Plant. 64, 123–129 (1985).

    Article  CAS  Google Scholar 

  18. Soll, J., Kemmerling, M. & Schultz, G. Tocopherol and plastoquinone synthesis in spinach chloroplasts subfractions. Arch. Biochem. Biophys. 204, 544–550 (1980).

    Article  CAS  Google Scholar 

  19. Collakova, E. & DellaPenna, D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 127, 1113–1124 (2001).

    Article  CAS  Google Scholar 

  20. Savidge, B. et al. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 129, 321–332 (2002).

    Article  CAS  Google Scholar 

  21. Schledz, M., Seidler, A., Beyer, P. & Neuhaus, G. A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett. 499, 15–20 (2001).

    Article  CAS  Google Scholar 

  22. Soll, J. & Schultz, G. Comparison of geranylgeranyl and phytyl substituted methylquinols in the tocopherol synthesis of spinach chloroplasts. Biochem. Biophys. Res. Commun. 91, 715–720 (1979).

    Article  CAS  Google Scholar 

  23. Collakova, E. & DellaPenna, D. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol. 131, 632–642 (2003).

    Article  CAS  Google Scholar 

  24. Grams, G.W., Blessin, C.W. & Inglett, G.E. Distribution of tocopherols within the corn kernel. J. Am. Oil Chem. Soc. 47, 337–339 (1970).

    Article  CAS  Google Scholar 

  25. Goffman, F.D. & Böhme, T. Relationship between fatty acid profile and vitamin E content of maize hybrids (Zea mays L.) J. Agric. Food Chem. 49, 4990–4994 (2001).

    Article  CAS  Google Scholar 

  26. Lee, K. & Huang, A.H. Genes encoding oleosins in maize kernel of inbreds Mo17 and B73. Plant Mol. Biol. 26, 1981–1987 (1994).

    Article  CAS  Google Scholar 

  27. Porfirova, S., Bergmüller, E., Tropf, S., Lemke, R. & Dörmann, P. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. USA 99, 12495–12500 (2002).

    Article  CAS  Google Scholar 

  28. Shintani, D. & DellaPenna, D. Elevating the vitamin E content of plants through metabolic engineering. Science 282, 2098–2100 (1998).

    Article  CAS  Google Scholar 

  29. Fryer, M.J. The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ. 15, 381–392 (1992).

    Article  CAS  Google Scholar 

  30. Demmig-Adams, B. & Adams, W.W. Antioxidants in photosynthesis and human nutrition. Science 298, 2149–2153 (2002).

    Article  CAS  Google Scholar 

  31. Cahoon, E.B. et al. Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic somatic soybean embryos. Proc. Natl. Acad. Sci. USA 96, 12935–12940 (1999).

    Article  CAS  Google Scholar 

  32. Cahoon, E.B., Ripp, K.G., Hall, S.E. & Kinney, A.J. Formation of conjugated Δ8, Δ10-double bonds by Δ12-oleic acid desaturase-related enzymes. Biosynthetic origin of calendic acid. J. Biol. Chem. 276, 2637–2643 (2001).

    Article  CAS  Google Scholar 

  33. Rogers, S.G., Horsch, R.B. & Fraley, R.T. Gene transfer in plants: production of transformed plants using Ti plasmid vectors. Methods Enzymol. 118, 627–640 (1986).

    Article  CAS  Google Scholar 

  34. Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Paris 316, 1194–1199 (1993).

    CAS  Google Scholar 

  35. Nair, P.P. & Luna, Z. Identification of α-tocopherol from tissues by combined gas-liquid chromatography, mass spectrometry and infrared spectroscopy. Arch. Biochem. Biophys. 127, 413–418 (1968).

    Article  CAS  Google Scholar 

  36. Frega, N., Mozzon, M. & Bocci, F. Identification and estimation of tocotrienols in the annatto lipid fraction by gas chromatography–mass spectrometry. J. Am. Oil Chem. Soc. 75, 1723–1728 (1998).

    Article  CAS  Google Scholar 

  37. Lichtenthaler, H.K. Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods Enzymol. 148, 350–382 (1987).

    Article  CAS  Google Scholar 

  38. Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  Google Scholar 

  39. Glassman, K.F. et al. Recombinant constructs and their use in reducing gene expression. PCT WO 0200904 (2002).

  40. Gordon-Kamm, W. et al. Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc. Natl. Acad. Sci. USA 99, 11975–11980 (2002).

    Article  CAS  Google Scholar 

  41. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Jerry Ranch for conducting the corn transformation experiments. We also thank Alfred Ciuffetelli for assistance with corn seed analyses and Trissa Miller and Rebecca Cahoon for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar B Cahoon.

Ethics declarations

Competing interests

Patent applications have been filed on the sequences and utility of the cDNAs described in the manuscript.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahoon, E., Hall, S., Ripp, K. et al. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21, 1082–1087 (2003). https://doi.org/10.1038/nbt853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing