Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Decoding global gene expression programs in liver cancer by noninvasive imaging


Paralleling the diversity of genetic and protein activities, pathologic human tissues also exhibit diverse radiographic features. Here we show that dynamic imaging traits in non-invasive computed tomography (CT) systematically correlate with the global gene expression programs of primary human liver cancer. Combinations of twenty-eight imaging traits can reconstruct 78% of the global gene expression profiles, revealing cell proliferation, liver synthetic function, and patient prognosis. Thus, genomic activity of human liver cancers can be decoded by noninvasive imaging, thereby enabling noninvasive, serial and frequent molecular profiling for personalized medicine.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Linking imaging traits and global gene expression.
Figure 2: An association map of imaging traits and global gene expression.
Figure 3: Molecular portraits of HCC from imaging traits.
Figure 4: Imaging traits predict venous invasion and survival.


  1. Eisenberg, R.L . Radiology: An Illustrated History (Mosby Year Book, St. Louis, 1991).

    Google Scholar 

  2. Chung, C.H., Bernard, P.S. & Perou, C.M. Molecular portraits and the family tree of cancer. Nat. Genet. 32 Suppl, 533–540 (2002).

    CAS  Article  Google Scholar 

  3. Segal, E., Friedman, N., Kaminski, N., Regev, A. & Koller, D. From signatures to models: understanding cancer using microarrays. Nat. Genet. 37 Suppl, S38–S45 (2005).

    CAS  Article  Google Scholar 

  4. Chen, X. et al. Gene expression patterns in human liver cancers. Mol. Biol. Cell 13, 1929–1939 (2002).

    CAS  Article  Google Scholar 

  5. Nino-Murcia, M. et al. Focal liver lesions: pattern-based classification scheme for enhancement at arterial phase CT. Radiology 215, 746–751 (2000).

    CAS  Article  Google Scholar 

  6. Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34, 166–176 (2003).

    CAS  Article  Google Scholar 

  7. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    CAS  Article  Google Scholar 

  8. Kerr, D.J. Targeting angiogenesis in cancer: clinical development of bevacizumab. Nat. Clin. Pract. Oncol. 1, 39–43 (2004).

    CAS  Article  Google Scholar 

  9. Thomas, M.B. & Abbruzzese, J.L. Opportunities for targeted therapies in hepatocellular carcinoma. J. Clin. Oncol. 23, 8093–8108 (2005).

    CAS  Article  Google Scholar 

  10. Giannelli, G. et al. Clinical role of MMP-2/TIMP-2 imbalance in hepatocellular carcinoma. Int. J. Cancer 97, 425–431 (2002).

    CAS  Article  Google Scholar 

  11. Qin, L.X. & Tang, Z.Y. The prognostic molecular markers in hepatocellular carcinoma. World J. Gastroenterol. 8, 385–392 (2002).

    CAS  Article  Google Scholar 

  12. Poon, R.T. et al. Clinical significance of thrombospondin 1 expression in hepatocellular carcinoma. Clin. Cancer Res. 10, 4150–4157 (2004).

    CAS  Article  Google Scholar 

  13. Whitfield, M.L., George, L.K., Grant, G.D. & Perou, C.M. Common markers of proliferation. Nat. Rev. Cancer 6, 99–106 (2006).

    CAS  Article  Google Scholar 

  14. Chang, H.Y. et al. Robustness, scalability, and integration of a wound response gene expression signature in predicting survival of human breast cancer patients. Proc. Natl. Acad. Sci. USA 102, 3738–3743 (2005).

    CAS  Article  Google Scholar 

  15. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    CAS  Article  Google Scholar 

  16. Paik, S. et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J. Clin. Oncol. 24, 3726–3734 (2006).

    CAS  Article  Google Scholar 

  17. van 't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    CAS  Article  Google Scholar 

  18. van de Vijver, M.J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    CAS  Article  Google Scholar 

  19. Potti, A. et al. A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N. Engl. J. Med. 355, 570–580 (2006).

    CAS  Article  Google Scholar 

  20. Bullinger, L. et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 350, 1605–1616 (2004).

    CAS  Article  Google Scholar 

  21. Lapointe, J. et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl. Acad. Sci. USA 101, 811–816 (2004).

    CAS  Article  Google Scholar 

Download references


Supported by grants from UC San Diego (M.D.K.), the Israel Science Foundation (E.S.), and the National Institutes of Health (X.C., H.Y.C.). E.S. is the incumbent of the Soretta and Henry Shapiro career development chair. H.Y.C. is the Kenneth G. and Elaine A. Langone Scholar of the Damon Runyon Cancer Research Foundation. M.D.K. is the Bracco Diagnostics Research Scholar of the Radiological Society of North America.

Author information

Authors and Affiliations



E.S., H.Y.C. and M.D.K. conceived of the project, analyzed the data and wrote the paper. All other authors provided data or analysis tools.

Corresponding authors

Correspondence to Howard Y Chang or Michael D Kuo.

Ethics declarations

Competing interests

E.S., H.Y.C. and M.D.K. have filed a provisional patent [AU: Correct?] application for this work.

Supplementary information

Supplementary Table 1

Imaging trait name and definition. (XLS 3678 kb)

Supplementary Table 2

Modules and imaging trait splits. (PDF 21 kb)

Supplementary Table 3

Venous invasion module analysis. (XLS 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Segal, E., Sirlin, C., Ooi, C. et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25, 675–680 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing