Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Analysis of transcription complexes and effects of ligands by microelectrospray ionization mass spectrometry

Abstract

The human vitamin D receptor (VDR) and retinoid X receptor-α (RXRα) modulate gene activity by forming homodimeric or heterodimeric complexes with specific DNA sequences and interaction with other elements of the transcriptional apparatus in the presence of their known endogenous ligands 1α,25-dihydroxyvitamin D3 (1,25-[OH]2D3) and 9-cis-retinoic acid (9-c-RA). We used rapid buffer exchange gel filtration in conjunction with microelectrospray ionization mass spectrometry (μESI-MS) to study the binding of these receptors to the osteopontin vitamin D response element (OP VDRE). In the absence of DNA, both VDR and RXRα existed primarily as monomers, but in the presence of OP VDRE, homodimeric RXRα and heterodimeric RXRα–VDR complexes were shown to bind OP VDRE. Addition of 9-c-RA increased RXRα homodimer–OP VDRE complexes, and addition of 1,25-(OH) 2D3 resulted in formation of 1,25-(OH)2D 3–VDR–RXRα–OP VDRE complexes. Addition of low-affinity binding ligands had no detectable effect on the VDR–RXRα–OP VDRE transcription complex. These results demonstrate the utility of μESI-MS in analyzing multimeric, high-molecular-weight protein–protein and protein–DNA complexes, and the effects of ligands on these transcriptional complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gel shift analyses of VDR and RXRα complexes with OP VDRE DNA.
Figure 2: Positive-ion μESI-MS of protein and protein–DNA mixtures, over mass range 3,000–5,000 amu, in 10 mM NH4HCO3 at pH 8.0.
Figure 3: Positive-ion μESI-MS of protein–DNA mixtures over mass range 3,500–4,100 amu in 10 mM NH4HCO3 at pH 8.0.
Figure 4: Positive-ion μESI-MS of protein–DNA–ligand mixtures over 3,400–4100 amu.

Similar content being viewed by others

References

  1. Pike, J.W. Vitamin D3 receptors: structure and function in transcription. Annu. Rev. Nutr. 11, 189– 216 (1991).

    Article  CAS  Google Scholar 

  2. Carlberg, C. The vitamin D3 receptor in the context of the nuclear receptor superfamily—the central role of the retinoid X receptor. Endocrine 4, 91–105 ( 1996).

    Article  CAS  Google Scholar 

  3. Haussler, M.R. et al. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. J. Endocrinol. 154, S57–S73 (1997).

    Article  CAS  Google Scholar 

  4. Darwish, H. & DeLuca, H.F. Vitamin D-regulated gene expression. Crit. Rev. Eukaryotic Gene Expression 3, 89–116 (1993).

    CAS  Google Scholar 

  5. Bagchi, M.K. in Molecular biology of steroid and nuclear hormone receptors (ed. Freedman, L.P.) 159–189 (Birkhaüser, Boston, MA; 1998).

    Book  Google Scholar 

  6. Cheskis, B. & Freedman, L.P. in Molecular biology of steroid and nuclear hormone receptors (ed. Freedman, L.P.) 133– 158 (Birkhaüser, Boston, MA; 1998).

    Book  Google Scholar 

  7. Cheskis, B. & Freedman, L.P. Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers. Mol. Cell. Biol. 14, 3329–3338 (1994).

    Article  CAS  Google Scholar 

  8. Lemon, B.D., Fondell, J.D. & Freedman, L.P. Retinoid X receptor: vitamin D3 receptor heterodimers promote stable preinitiation complex formation and direct 1,25-dihydroxyvitamin D3-dependent cell-free transcription. Mol. Cell Biol. 17, 1923–1937 ( 1997).

    Article  CAS  Google Scholar 

  9. Schwartz, B.L., Gale, D.C. & Smith, R.D. in Molecular biology, Vol. 61 (ed. Chapman, J.R.) 115–139 (Humana Press, Totowa NJ; 1996).

    Google Scholar 

  10. Fitzgerald, M.C., Chernushevich, I., Standing, K.G., Whitman, C.P. & Kent, S.B.H. Probing the oligomeric structure of an enzyme by electrospray ionization time-of-flight mass spectrometry. Proc. Natl. Acad. Sci. USA 93, 6851– 6856 (1996).

    Article  CAS  Google Scholar 

  11. Potier, N. et al. Study of a noncovalent trp repressor:DNA operator complex by electrospray ionization time-of-flight mass spectrometry. Protein Sci. 7, 1388–1395 (1998).

    Article  CAS  Google Scholar 

  12. Benjamin, D.B., Robinson, C.V., Hendrick, J.P., Hartl, F.U. & Dobson, C.M. Mass spectrometry of ribosomes and ribosomal subunits. Proc. Natl. Acad. Sci. USA 95, 7391–7395 (1998).

    Article  CAS  Google Scholar 

  13. Cheng, X., Harms, A.C., Goudreau, P.N., Terwilliger, T.C. & Smith, R.D. Direct measurement of oligonucleotide binding stoichiometry of gene V protein by mass spectrometry. Proc. Natl. Acad. Sci. USA 93, 7022– 7027 (1996).

    Article  CAS  Google Scholar 

  14. Smith, R.D., Bruce, J.E., Wu, Q.Y. & Lei, Q.P. New mass spectrometric methods for the study of noncovalent associations of biopolymers. Chemical Society Reviews 26, 191–202 (1997).

    Article  CAS  Google Scholar 

  15. Loo, J.A. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1– 23 (1997).

    Article  CAS  Google Scholar 

  16. Nemirovskiy, O.V., Ramanathan, R. & Gross, M.L. Investigation of calcium-induced, noncovalent association of calmodulin with mellitin by electrospray ionization mass spectrometry. J Am. Soc. Mass Spectrom. 8, 809– 812 (1997).

    Article  CAS  Google Scholar 

  17. Veenstra, T.D., Johnson K.L., Tomlinson A.J., Naylor, S. & Kumar, R. Determination of calcium binding sites in rat brain calbindin D28K by electrospray ionization mass spectrometry. Biochemistry 36, 3535–3542 (1997).

    Article  CAS  Google Scholar 

  18. Goodlett, D.R., Camp, D.G., Hardin, C.C., Corregan, M., & Smith, R.D. Direct observation of a DNA quadruplex by electrospray ionization mass spectrometry. Biol. Mass Spectrom. 22, 181–183 (1993). [.

  19. Cheng, X. et al. Mass spectrometric characterization of sequence-specific complexes of DNA and transcription factor PU.1 DNA binding domain. Anal. Biochem. 239, 35–40 ( 1996).

    Article  CAS  Google Scholar 

  20. Craig, T.A. et al. Zinc binding properties of the DNA binding domain of the 1,25-dihydroxyvitamin D3 receptor. Biochemistry 36, 10482–10491 (1997).

    Article  CAS  Google Scholar 

  21. Veenstra, T.D. et al. Zinc-induced conformational changes in the DNA-binding domain of the vitamin D receptor determined by electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 9, 8– 14 (1998).

    Article  CAS  Google Scholar 

  22. Veenstra, T.D. et al. Metal mediated sterol receptor-DNA complex association and dissociation determined by electrospray ionization mass spectrometry. Nat. Biotechnol. 16, 262–266 ( 1998).

    Article  CAS  Google Scholar 

  23. Siuzdak, G. Mass spectrometry for biotechnology (Academic Press, San Diego, CA; 1996).

    Google Scholar 

  24. Yang, Q., Tomlinson, A.J. & Naylor, S. in Advanced chromatographic and electromigration methods in biosciences (ed. Deyl, Z.) 95–140 Ch. 3 (Elsevier Press, Amsterdam, The Netherlands; 1998).

    Book  Google Scholar 

  25. Carey, J. Gel retardation. Methods Enzymol. 208, 103 –117 (1991).

    Article  CAS  Google Scholar 

  26. Sone, T., Kerner, S.A. & Pike, J.W. Vitamin D receptor interactions with specific DNA. Association as a 1,25-dihydroxyvitamin D3-modulated heterodimer. J. Biol. Chem. 266, 23296– 23305 (1991).

    CAS  PubMed  Google Scholar 

  27. Giguere, V. Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocr. Rev. 15, 61–79 (1994).

    CAS  PubMed  Google Scholar 

  28. Jones, G., Strugnell, S.A. & DeLuca, H.F. Current understanding of the molecular actions of vitamin D. Physiol. Rev. 78, 1193– 1231 (1998).

    Article  CAS  Google Scholar 

  29. Revelle, L., Solan, V., Londowski, J., Bollman, S. & Kumar, R. Synthesis and biologic activity of a C-ring analogue of vitamin D3: biologic and protein binding properties of 11alpha-hydroxyvitamin D3. Biochemistry 23, 1983– 1987 (1984).

    Article  CAS  Google Scholar 

  30. Sheterline, P. Protein profile. Transcription factors 3: nuclear receptors. Vol. 2. 1209–1215 (Academic Press, London, UK; 1995).

    Google Scholar 

  31. Schräder, M., Müller, K.M. & Carlberg, C. Specificity and flexibility of vitamin D signaling. J. Biol. Chem. 269, 5501– 5504 (1994).

    PubMed  Google Scholar 

  32. Kahlen, J.-P. & Carlberg, C. Functional characterization of a 1,25-dihydroxyvitamin D3 receptor binding site found in the rat atrial natriuretic factor promoter. Biochem. Biophys. Res. Commun. 218, 882–886 ( 1996).

    Article  CAS  Google Scholar 

  33. Schräder, M., Nayeri, S., Kahlen, J.-P., Müller, K.M. & Carlberg, C. Natural vitamin D3 response elements formed by inverted palindromes: polarity-directed ligand sensitivity of vitamin D3 receptor-retinoid X receptor heterodimer-mediated transactivation. Mol. Cell. Biol. 15, 1154 –1161 (1995).

    Article  Google Scholar 

  34. Lehmann, J.M. et al. Formation of retinoid X receptor homodimers leads to repression of T3 response: hormonal cross talk by ligand-induced squelching. Mol. Cell. Biol. 13,7698– 7707 (1993).

    Article  CAS  Google Scholar 

  35. MacDonald, P.N. et al. Retinoid X receptors stimulate and 9-cis retinoic acid inhibits 1,25-dihydroxyvitamin D3-activated expression of the rat osteocalcin gene. Mol. Cel. Biol. 13, 5907 –5917 (1993).

    Article  CAS  Google Scholar 

  36. Cheskis, B. & Freedman, L.P. Modulation of nuclear receptor interactions by ligands: kinetic analysis using surface plasmon resonance. Biochemistry 35, 3309– 3318 (1996).

    Article  CAS  Google Scholar 

  37. Allenby, G. et al. Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc. Natl. Acad. Sci. USA 90, 30–34 (1993).

    Article  CAS  Google Scholar 

  38. Fried, M.G. Measurement of protein–DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis 10, 366–376 (1989).

    Article  CAS  Google Scholar 

  39. Craig, T.A. & Kumar, R. Synthesis and purification of soluble ligand binding domain of the human vitamin D3 receptor. Biochem. Biophys. Res. Commun. 218, 902– 907 (1996).

    Article  CAS  Google Scholar 

  40. Pharmacia Biotech. GST fusions system (manual). 2nd edn. (Pharmacia Biotech; Piscataway, NJ; 1994).

    Google Scholar 

  41. Carlberg, C. et al. Two nuclear signaling pathways for vitamin D. Nature 361, 657–660 (1993).

    Article  CAS  Google Scholar 

  42. Johnson, K.L., Veenstra, T.D., Tomlinson, A.J., Kumar, R. & Naylor, S. Determination of non-covalent metal ion/protein interactions using a microflow electrospray ionization mass spectrometry interface. Rapid Commun. Mass Spectrom. 11, 939–942 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Diana Ayerhart for her help in preparing this manuscript. Supported by NIH grant DK 25409 (R.K.) and Finnigan MAT#1 (S.N.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen Naylor or Rajiv Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, T., Benson, L., Tomlinson, A. et al. Analysis of transcription complexes and effects of ligands by microelectrospray ionization mass spectrometry. Nat Biotechnol 17, 1214–1218 (1999). https://doi.org/10.1038/70767

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/70767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing