Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Entrapment and Growth of Murine Hybridoma Cells in Calcium Alginate Gel Microbeads

Abstract

We have developed a gel entrapment process for the entrapment and growth of mu-rine hybridoma cells. This entrapment process takes advantage of the calcium-mediated gelation of sodium alginate. Mu-rine hybridoma cells entrapped within calcium alginate gel microbeads were shown to proliferate to high cell density while maintaining high cell viability. The rate of monoclonal antibody (Mab) production by calcium alginate gel-entrapped murine hybridoma cells was identical to control suspension cultures indicating that alginate gels do not effect the production or restrict diffusion of murine IgG into the medium. Gel-entrapped hybridoma cells cultured in 1.0L bioreactors under dissolved oxygen control grew to tenfold higher viable cell densities than cells grown in conventional suspension culture. The resultant concentration of Mab in medium from cultures of gel-entrapped hybridoma cells was concomitantly increased by a factor of ten.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mattiasson, B. 1983. Immobilization methods, p. 4–19. In: Immobilized Cells and Organelles, Vol. 1. Mattiasson, B. (Ed.) CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  2. Nilsson, K., Scheirer, W., Merten, O.W. Ostberg, L., Liehl, E., Katinger, D., and Mosbach, K. 1983 Entrapment of animal cells for production of monoclonal antibodies and other biomolecules. Nature 302:629–630.

    Article  CAS  Google Scholar 

  3. Nilsson, K. and Mosbach, K. 1980 Preparation of immobilized animal cells. FEBS Lett. 118:145–150.

    Article  CAS  Google Scholar 

  4. Nilsson, K., et al. 1983. A general method for the immobilization of cells with preserved viability. Eur. J. Appl. Microbiol. Biotechnol. 17:319–326.

    Article  CAS  Google Scholar 

  5. Schierer, W., Nilsson, K., Merten, O.W. Katinger, H.W.D., and Mosbach, K. 1980. Entrapment of animal cells for the production of biomolecules such as monoclonal antibodies. Devel. Biol. Standard 55:155–161.

    Google Scholar 

  6. Pilwat, G., Washausen, P., Llein, K. and Zimmerman, L. 1980. Immobilization of human red blood cells. Biochem. Biophys. Biol. Virol. 35:352.

    CAS  Google Scholar 

  7. Kupchik, H.Z., Langer, R.S., Habern, S. El Deriny and O'Brien, M. 1983. A new method for the three-dimensional in vitro growth of human cancer cells. Exp. Cell. Res. 147:454–460.

    Article  CAS  Google Scholar 

  8. Lim, F. and Sun, A.M. 1980. Microencapsulated islets as bioartincial endocrine pancreas. Science 210:908–910.

    Article  CAS  Google Scholar 

  9. Jarvis, A.P., Grdina, T.A. and Sullivan, M.F. 1986. Cell growth and hemoglobin synthesis in murine erythroleukenic cells propagated in high density microcapsule culture. In Vitro 22:589–596.

    CAS  Google Scholar 

  10. McNeely and Pettitt, D.J. 1973. Industrial Gums, p. 49–82. Whistler, R. L. and BeMiller, J. N. (Eds.) Academic Press, Inc., N.Y., N.Y.

  11. Iijima, S., Mano, T., Taniguchi, M. and Kobayashi, T. 1988. Immobilization of hybridoma cells with alginate and methane polymer and improved monoclonal antibody production. Appl. Microbiol. Biotechnol. 28:572–576.

    Article  CAS  Google Scholar 

  12. Shirai, Y., Sasaki, R., Hashimoto, K., Kawahara, H., Hitami, K., and Chiba, H., 1988. Continuous production of erythropoietin with immobilized animal cells. Appl. Microbiol. Biotechnol. 29:544–549.

    CAS  Google Scholar 

  13. Familletti, P.C. and Fredericks, J.E. 1988. Techniques formammlian cell immobilization. Nature Biotechnology 6:41–44.

    Article  Google Scholar 

  14. Tanaka, H., Masatoni, M. and Vellky, I.A. 1984. Diffusion characteristics of substrates in calcium alginate gel beads. Biotechnol. Bioeng. 26:56–58.

    Google Scholar 

  15. Cheetham, P.S. Blunt, K.W. and Burke, C. 1979. Physical studies on cell immobilization using calcium alginate gels. Biotechnol. Bioeng. 21:2155–2168.

    Article  CAS  Google Scholar 

  16. Brodelius, P. and Mosbach, K. 1982. Immobilized plant cells. Adv. Applied Microbiology. 28:1–26.

    Article  CAS  Google Scholar 

  17. Tanaka, H., Kurosawa, H., Kokutata, E. and Vellky, I.A. 1984. Preparation of immobilized glucoamylase using Ca-alginate gel coated with partially quaternized poly(ethyleneimine). Biotechnol. Bioeng. 26:1393–1394.

    Article  CAS  Google Scholar 

  18. Roscoe, J.P. and Owsianka, A.M. 1982. Alginate: A reversible semisolid medium for investigating cell transformation. Br. J. Cancer. 46:965–969.

    Article  CAS  Google Scholar 

  19. Glacken, M.W. Fleischaker, R.J. and Siskey, A.J. 1983. Large-scale production of mammalian cells and their products: Engineering principles and barriers to scale-up. Annals NY Acad. Sci. 413:355–372.

    Article  CAS  Google Scholar 

  20. Reuveny, S., Velez, D., Miller, L., and MacMillan, J.D. 1986. Comparison of cell propagation methods for their effect on monoclonal antibody yield in fermentors. J. Immunol. Methods. 86:61–69.

    Article  CAS  Google Scholar 

  21. Velez, D., Reuveny, S., Miller, L., and MacMillan, J.D. 1987. Effect of feeding rate on monoclonal antibody production in a modified perfusion-fed fermentor. J. Immunol. Methods. 102:275–278.

    Article  CAS  Google Scholar 

  22. Fazekas de St. Groth. 1983. Automated production of monoclonal antibodies in a cytostat. J. Immunol. Methods. 57:121–136.

    Article  CAS  Google Scholar 

  23. Shirai, Y., Hashimoto, K., Yamaji, H. and Tokashiki, M. 1987. Continuous production of monoclonal antibody with immobilized hybridoma cells in an expanded bed fermentor. Appl. Microbiol. Biotechnol. 26:495–499.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinacore, M., Creswick, B. & Buehler, R. Entrapment and Growth of Murine Hybridoma Cells in Calcium Alginate Gel Microbeads. Nat Biotechnol 7, 1275–1279 (1989). https://doi.org/10.1038/nbt1289-1275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1289-1275

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing