Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal Signal Transduction: Will Controlling Phosphorylation Cure Disease?

Abstract

Are small-molecule, ligand-independent drugs for receptor-mediated diseases on the horizon?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barbacid, M. 1993. Nerve growth factor: a tale of two receptors. Oncogene 8: 2033–2042.

    CAS  Google Scholar 

  2. Jing, S., Tapley, P., and Barbacid, M. 1992. Nerve growth-factor mediates signal transduction through Trk homodimer. Neuron 9: 1067–1079.

    Article  CAS  Google Scholar 

  3. Stahl, N., and Yancopoulos, G. 1993. The alphas, betas, and kinases of cytokine receptor complexes. Cell 74: 587–590.

    Article  CAS  Google Scholar 

  4. Baumann, H., Ziegler, S., Mosley, B., Morella, K., Panjovic, S., and Gearing, D. 1993. Reconstitution of the response to leuke mia inhibitory factor, oncostatin M, and ciliary neurotrophic factor in hepatoma cells. J. Biol. Chem. 268: 8414–8417.

    CAS  PubMed  Google Scholar 

  5. Pharr, P., Hankins, D., Hofbauer, A., Lodish, H. and Longmore, G. 1993. Expression of a constitutively active erythropoietin receptor in primary hematopoietic progenitors abrogates eryth ropoietin dependence. Proc. Natl. Acad. Sci. U.S.A. 90: 938–942.

    Article  CAS  Google Scholar 

  6. Delachapelle, A., Traskelin, A., and Juvonen, E. 1993. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc. Natl. Acad. Sci. U.S.A. 90: 4495–4499.

    Article  CAS  Google Scholar 

  7. Knusel, B., and Hefti, F. 1992. K-252 Compounds: Modulators of neurotrophin signal transduction. J. Neurochem. 59: 1987–1996.

    Article  CAS  Google Scholar 

  8. Maroney, A., Forbes, M.E., Glicksman, M., Lipfert, L., Neff, N., Siman, R., Farah, J., and Dionne, C. 1993. K252A induces tyrosine phosphorylation and differentiation in SY5 Y cells inde pendently of protein kinase-C inhibition. Annual Meeting of the Society for Neuroscience Abstract, Nov. 7–12, Washington, DC.

  9. Glicksman, M., Prantner, J.E., Meyer, S., Forbes, M.E., Dasgupta, M., Lewis, M., and Neff, N. 1993. K-252a and staurosporine promote choline acetyltransferase activity in rat spinal cord cultures. J. Neurochem. 61: 210–221.

    Article  CAS  Google Scholar 

  10. Rabin, S., Cleghon, V., and Kaplan, D. 1993. SNT, a differentiation-specific target of neurotrophic factor-induced tyrosine kinase activity in neurons and PC 12 cells. Mol. Cell. Biol. 13: 2203–2213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edgington, S. Neuronal Signal Transduction: Will Controlling Phosphorylation Cure Disease?. Nat Biotechnol 11, 1237–1241 (1993). https://doi.org/10.1038/nbt1193-1237

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1193-1237

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing