Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting synapse function and loss for treatment of neurodegenerative diseases

Abstract

Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synaptic structure and pathology in neurodegeneration.
Fig. 2: Therapeutic approaches targeting synapse function and loss.
Fig. 3: Key pathways mediating axonal and presynaptic degeneration.
Fig. 4: Approaches for quieting hyperactive networks.
Fig. 5: Major regulators of microglial and astrocytic synapse phagocytosis.

Similar content being viewed by others

References

  1. Wilson, D. M. et al. Hallmarks of neurodegenerative diseases. Cell 186, 693–714 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. DeKosky, S. T. & Scheff, S. W. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Blennow, K., Bogdanovic, N., Alafuzoff, I., Ekman, R. & Davidsson, P. Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J. Neural Transm. 103, 603–618 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Scheff, S. W., Price, D. A., Schmitt, F. A., DeKosky, S. T. & Mufson, E. J. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68, 1501–1508 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Südhof, T. C. Towards an understanding of synapse formation. Neuron 100, 276–293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Dejanovic, B. et al. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol. 12, e1001908 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Avery, M. C. & Krichmar, J. L. Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front. Neural Circuits 11, 108 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R. & Ribeiro, F. M. Alzheimer’s disease: targeting the cholinergic system. Curr. Neuropharmacol. 14, 101–115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen, N. J. & Eroglu, C. Cell biology of astrocyte-synapse interactions. Neuron 96, 697–708 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Chung, W.-S. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, J.-H. et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 590, 612–617 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Hammond, T. R., Marsh, S. E. & Stevens, B. Immune signaling in neurodegeneration. Immunity 50, 955–974 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bohlen, C. J., Friedman, B. A., Dejanovic, B. & Sheng, M. Microglia in brain development, homeostasis, and neurodegeneration. Annu. Rev. Genet. 53, 263–288 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Dejanovic, B. et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron 100, 1322–1336.e7 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Dejanovic, B. et al. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nat. Aging 2, 837–850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, T. et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep. 28, 2111–2123.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J. et al. Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency. Nature 588, 459–465 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vasek, M. J. et al. A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature 534, 538–543 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong, S. et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352, aad8373 (2016).

    Article  Google Scholar 

  26. Werneburg, S. et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity 52, 167–182.e7 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Comer, A. L. et al. Increased expression of schizophrenia-associated gene C4 leads to hypoconnectivity of prefrontal cortex and reduced social interaction. PLoS Biol. 18, e3000604 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wilton, D. K. et al. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in Huntington’s disease. Nat. Med. https://doi.org/10.1038/s41591-023-02566-3 (2023).

  29. Yilmaz, M. et al. Overexpression of schizophrenia susceptibility factor human complement C4A promotes excessive synaptic loss and behavioral changes in mice. Nat. Neurosci. 24, 214–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, J. et al. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Sci. Transl Med. 15, eadf0141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hansen, D. V., Hanson, J. E. & Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol. 217, 459–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Srinivasan, K. et al. Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep. 31, 107843 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smajić, S. et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain 145, awab446 (2021).

    Google Scholar 

  34. Menden, K. et al. Integrated multi-omics analysis reveals common and distinct dysregulated pathways for genetic subtypes of frontotemporal dementia. Preprint at bioRxiv https://doi.org/10.21203/rs.3.rs-153135/v1 (2021).

  35. Limone, F. et al. Single-nucleus sequencing reveals enriched expression of genetic risk factors sensitises motor neurons to degeneration in ALS. Preprint at bioRxiv https://doi.org/10.1101/2021.07.12.452054 (2021).

  36. Wilton, D. K., Dissing-Olesen, L. & Stevens, B. Neuron-glia signaling in synapse elimination. Annu. Rev. Neurosci. 42, 107–127 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yun, S. P. et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24, 931–938 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Millecamps, S. & Julien, J.-P. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14, 161–176 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Geden, M. J. & Deshmukh, M. Axon degeneration: context defines distinct pathways. Curr. Opin. Neurobiol. 39, 108–115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Telias, M. & Segal, M. Editorial: pathological hyperactivity and hyperexcitability in the central nervous system. Front. Mol. Neurosci. 15, 955542 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Palop, J. J. & Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Do-Ha, D., Buskila, Y. & Ooi, L. Impairments in motor neurons, interneurons and astrocytes contribute to hyperexcitability in ALS: underlying mechanisms and paths to therapy. Mol. Neurobiol. 55, 1410–1418 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Pilotto, F. et al. Early molecular layer interneuron hyperactivity triggers Purkinje neuron degeneration in SCA1. Neuron 111, 2523–2543 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dong, X., Wang, Y. & Qin, Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 30, 379–387 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hesse, R. et al. Comparative profiling of the synaptic proteome from Alzheimer’s disease patients with focus on the APOE genotype. Acta Neuropathol. Commun. 7, 214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aryal, S. et al. Deep proteomics identifies shared molecular pathway alterations in synapses of patients with schizophrenia and bipolar disorder and mouse model. Cell Rep. 42, 112497 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Martínez-Serra, R., Alonso-Nanclares, L., Cho, K. & Giese, K. P. Emerging insights into synapse dysregulation in Alzheimer’s disease. Brain Commun. 4, fcac083 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Largo-Barrientos, P. et al. Lowering synaptogyrin-3 expression rescues tau-induced memory defects and synaptic loss in the presence of microglial activation. Neuron 109, 767–777 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou, L. et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nat. Commun. 8, 15295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhao, X. et al. Caspase-2 cleavage of tau reversibly impairs memory. Nat. Med. 22, 1268–1276 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Hoover, B. R. et al. Mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68, 1067–1081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ittner, L. M. et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 142, 387–397 (2009).

    Article  Google Scholar 

  56. Nieweg, K., Andreyeva, A., Stegen, B., van, Tanriöver, G. & Gottmann, K. Alzheimer’s disease-related amyloid-β induces synaptotoxicity in human iPS cell-derived neurons. Cell Death Dis. 6, e1709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharma, M. & Burré, J. α-Synuclein in synaptic function and dysfunction. Trends Neurosci. 46, 153–166 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Sengupta, U. & Kayed, R. Amyloid β, tau, and α-synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog. Neurobiol. 214, 102270 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Hackos, D. H. & Hanson, J. E. Diverse modes of NMDA receptor positive allosteric modulation: mechanisms and consequences. Neuropharmacology 112, 34–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Salpietro, V. et al. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat. Commun. 10, 3094 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lauterborn, J. C., Lynch, G., Vanderklish, P., Arai, A. & Gall, C. M. Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J. Neurosci. 20, 8–21 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lynch, G. & Gall, C. M. Ampakines and the threefold path to cognitive enhancement. Trends Neurosci. 29, 554–562 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Rex, C. S. et al. Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor. J. Neurophysiol. 96, 677–685 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Jourdi, H. et al. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J. Neurosci. 29, 8688–8697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baudry, M. et al. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol. Dis. 47, 210–215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hampson, R. E., Rogers, G., Lynch, G. & Deadwyler, S. A. Facilitative effects of the ampakine cx516 on short-term memory in rats: enhancement of delayed-nonmatch-to-sample performance. J. Neurosci. 18, 2740–2747 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Black, M. D. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology 179, 154–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Goff, D. C. et al. A placebo-controlled add-on trial of the ampakine, CX516, for cognitive deficits in schizophrenia. Neuropsychopharmacology 33, 465–472 (2008).

    Article  CAS  Google Scholar 

  70. Partin, K. M. AMPA receptor potentiators: from drug design to cognitive enhancement. Curr. Opin. Pharmacol. 20, 46–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Ward, S. E., Bax, B. D. & Harries, M. Challenges for and current status of research into positive modulators of AMPA receptors. Brit. J. Pharmacol. 160, 181–190 (2010).

    Article  CAS  Google Scholar 

  72. Shaffer, C. L. et al. Positive allosteric modulation of AMPA receptors from efficacy to toxicity: the interspecies exposure-response continuum of the novel potentiator PF-4778574. J. Pharmacol. Exp. Ther. 347, 212–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Chappell, A. S. et al. AMPA potentiator treatment of cognitive deficits in Alzheimer disease. Neurology 68, 1008–1012 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Bernard, K. et al. A 24-week double-blind placebo-controlled study of the efficacy and safety of the AMPA modulator S47445 in patients with mild to moderate Alzheimer’s disease and depressive symptoms. Alzheimer’s Dement. 5, 231–240 (2019).

    Article  Google Scholar 

  75. Ranganathan, M. et al. Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242. Mol. Psychiatry 22, 1633–1640 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Hansen, K. B. et al. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150, 1081–1105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin, C.-H., Huang, Y.-J., Lin, C.-J., Lane, H.-Y. & Tsai, G. E. NMDA neurotransmission dysfunction in mild cognitive impairment and Alzheimer’s disease. Curr. Pharm. Des. 20, 5169–5179 (2013).

    Article  Google Scholar 

  78. Javitt, D. C. & Zukin, S. R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry 148, 1301–1308 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Krystal, J. H. et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–214 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Lahti, A. C., Koffel, B., LaPorte, D. & Tamminga, C. A. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacol 13, 9–19 (1995).

    Article  CAS  Google Scholar 

  81. Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  82. XiangWei, W., Jiang, Y. & Yuan, H. De novo mutations and rare variants occurring in NMDA receptors. Curr. Opin. Physiol. 2, 27–35 (2018).

    Article  PubMed  Google Scholar 

  83. Homayoun, H. & Moghaddam, B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J. Neurosci. 27, 11496–11500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cohen, S. M., Tsien, R. W., Goff, D. C. & Halassa, M. M. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr. Res. 167, 98–107 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhou, Q. & Sheng, M. NMDA receptors in nervous system diseases. Neuropharmacology 74, 69–75 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Hackos, D. H. et al. Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron 89, 983–999 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Volgraf, M. et al. Discovery of GluN2A-selective NMDA receptor positive allosteric modulators (PAMs): tuning deactivation kinetics via structure-based design. J. Med. Chem. 59, 2760–2779 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Villemure, E. et al. GluN2A-selective pyridopyrimidinone series of NMDAR positive allosteric modulators with an improved in vivo profile. ACS Med. Chem. Lett. 8, 84–89 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Hanson, J. E. et al. GluN2A NMDA receptor enhancement improves brain oscillations, synchrony, and cognitive functions in Dravet syndrome and Alzheimer’s disease models. Cell Rep. 30, 381–396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hill, M. D. et al. SAGE-718: a first-in-class N-methyl-d-aspartate receptor positive allosteric modulator for the potential treatment of cognitive impairment. J. Med. Chem. 65, 9063–9075 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Huntley, M. A. et al. Genome-wide analysis of differential gene expression and splicing in excitatory neurons and interneuron subtypes. J. Neurosci. 40, 958–973 (2019).

    Article  PubMed  Google Scholar 

  92. Hanson, J. E. et al. Therapeutic potential of N-methyl-d-aspartate receptor modulators in psychiatry. Neuropsychopharmacology https://doi.org/10.1038/s41386-023-01614-3 (2023).

  93. Yao, L., Grand, T., Hanson, J. E., Paoletti, P. & Zhou, Q. Higher ambient synaptic glutamate at inhibitory versus excitatory neurons differentially impacts NMDA receptor activity. Nat. Commun. 9, 4000 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chao, M. V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Lu, B., Nagappan, G. & Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 220, 223–250 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Greenberg, M. E., Xu, B., Lu, B. & Hempstead, B. L. New insights in the biology of BDNF synthesis and release: implications in CNS function. J. Neurosci. 29, 12764–12767 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nagahara, A. H. & Tuszynski, M. H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug Discov. 10, 209–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Lu, B., Nagappan, G., Guan, X., Nathan, P. J. & Wren, P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci. 14, 401–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, C. S., Kavalali, E. T. & Monteggia, L. M. BDNF signaling in context: from synaptic regulation to psychiatric disorders. Cell 185, 62–76 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Casarotto, P. C. et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184, 1299–1313 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moliner, R. et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat. Neurosci. 26, 1032–1041 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sakane, T. & Pardridge, W. M. Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity. Pharm. Res. 14, 1085–1091 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Poduslo, J. F. & Curran, G. L. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Mol. Brain Res. 36, 280–286 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Soderquist, R. G. et al. PEGylation of brain‐derived neurotrophic factor for preserved biological activity and enhanced spinal cord distribution. J. Biomed. Mater. Res. A 91A, 719–729 (2009).

    Article  CAS  Google Scholar 

  105. Morse, J. et al. Brain-derived neurotrophic factor (BDNF) prevents the degeneration of medial septal cholinergic neurons following fimbria transection. J. Neurosci. 13, 4146–4156 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dittrich, F. et al. Pharmacokinetics of intrathecally applied BDNF and effects on spinal motoneurons. Exp. Neurol. 141, 225–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Croll, S. D. et al. Co-infusion with a TrkB-Fc receptor body carrier enhances BDNF distribution in the adult rat brain. Exp. Neurol. 152, 20–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Hempstead, B. L. The many faces of p75NTR. Curr. Opin. Neurobiol. 12, 260–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Lu, B., Pang, P. T. & Woo, N. H. The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 6, 603–614 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Henriques, A., Pitzer, C. & Schneider, A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: where do we stand? Front. Neurosci. 4, 32 (2010).

    PubMed  PubMed Central  Google Scholar 

  111. Jang, S.-W. et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl Acad. Sci. USA 107, 2687–2692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Longo, F. M. & Massa, S. M. Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat. Rev. Drug Discov. 12, 507–525 (2013).

    Article  PubMed  Google Scholar 

  113. Simmons, D. A. et al. A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington’s disease. J. Neurosci. 33, 18712–18727 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Todd, D. et al. A monoclonal antibody TrkB receptor agonist as a potential therapeutic for Huntington’s disease. PLoS ONE 9, e87923 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Boltaev, U. et al. Multiplex quantitative assays indicate a need for reevaluating reported small-molecule TrkB agonists. Sci. Signal. 10, eaal1670 (2017).

    Article  PubMed  Google Scholar 

  116. Qian, M. D. et al. Novel agonist monoclonal antibodies activate Trkb receptors and demonstrate potent neurotrophic activities. J. Neurosci. 26, 9394–9403 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bai, Y. et al. An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma. Invest. Ophthalmol. Vis. Sci. 51, 4722–4731 (2010).

    Article  PubMed  Google Scholar 

  118. Traub, S. et al. Pharmaceutical characterization of tropomyosin receptor kinase B-agonistic antibodies on human induced pluripotent stem (hiPS) cell-derived neurons. J. Pharmacol. Exp. Ther. 361, 355–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Merkouris, S. et al. Fully human agonist antibodies to TrkB using autocrine cell-based selection from a combinatorial antibody library. Proc. Natl Acad. Sci. USA 115, E7023–E7032 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guo, W. et al. TrkB agonistic antibodies superior to BDNF: utility in treating motoneuron degeneration. Neurobiol. Dis. 132, 104590 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Kim, G. S., Cho, S., Nelson, J. W., Zipfel, G. J. & Han, B. H. TrkB agonist antibody pretreatment enhances neuronal survival and long-term sensory motor function following hypoxic ischemic injury in neonatal rats. PLoS ONE 9, e88962 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Han, F., Guan, X., Guo, W. & Lu, B. Therapeutic potential of a TrkB agonistic antibody for ischemic brain injury. Neurobiol. Dis. 127, 570–581 (2019).

    Article  CAS  PubMed  Google Scholar 

  123. Hu, Y., Cho, S. & Goldberg, J. L. Neurotrophic effect of a novel TrkB agonist on retinal ganglion cells. Investig. Opthalmol. Vis. Sci. 51, 1747 (2010).

    Article  Google Scholar 

  124. Fouad, K., Vavrek, R. & Cho, S. A TrkB antibody agonist promotes plasticity after cervical spinal cord injury in adult rats. J. Neurotrauma 38, 1338–1348 (2021).

    Article  PubMed  Google Scholar 

  125. Yu, S. P., Jiang, M. Q., Shim, S. S., Pourkhodadad, S. & Wei, L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer’s disease. Mol. Neurodegener. 18, 43 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kumar, A. et al. S-Sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency. J. Clin. Invest. 127, 4365–4378 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Verma, M., Lizama, B. N. & Chu, C. T. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl Neurodegener. 11, 3 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Parsons, M. P. & Raymond, L. A. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82, 279–293 (2014).

    Article  CAS  PubMed  Google Scholar 

  129. Simon, R. P., Swan, J. H., Griffiths, T. & Meldrum, B. S. Blockade of N-methyl-d-aspartate receptors may protect against ischemic damage in the brain. Science 226, 850–852 (1984).

    Article  CAS  PubMed  Google Scholar 

  130. Wieloch, T. Hypoglycemia-induced neuronal damage prevented by an N-methyl-d-aspartate antagonist. Science 230, 681–683 (1985).

    Article  CAS  PubMed  Google Scholar 

  131. Yurkewicz, L., Weaver, J., Bullock, M. R. & Marshall, L. F. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J. Neurotrauma 22, 1428–1443 (2005).

    Article  PubMed  Google Scholar 

  132. Merchant, R. E. et al. A double‐blind, placebo‐controlled study of the safety, tolerability and pharmacokinetics of CP‐101,606 in patients with a mild or moderate traumatic brain injury. Ann. NY Acad. Sci. 890, 42–50 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Ikonomidou, C. & Turski, L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1, 383–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Hanson, J. E. et al. Chronic GluN2B antagonism disrupts behavior in wild-type mice without protecting against synapse loss or memory impairment in Alzheimer’s disease mouse models. J. Neurosci. 34, 8277–8288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Preskorn, S. H. et al. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-d-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J. Clin. Psychopharm. 28, 631–637 (2008).

    Article  CAS  Google Scholar 

  136. Ghaemi, N., Sverdlov, A., Shelton, R. & Litman, R. Efficacy and safety of mij821 in patients with treatment-resistant depression: results from a randomized, placebo-controlled, proof-of-concept study. Eur. Psychiatry 64, S334–S335 (2021).

    Article  PubMed Central  Google Scholar 

  137. Xia, P., Chen, H. V., Zhang, D. & Lipton, S. A. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci. 30, 11246–11250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Johnson, J. W. & Kotermanski, S. E. Mechanism of action of memantine. Curr. Opin. Pharmacol. 6, 61–67 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Oliver, D. et al. Memantine inhibits efferent cholinergic transmission in the cochlea by blocking nicotinic acetylcholine receptors of outer hair cells. Mol. Pharmacol. 60, 183–189 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Rammes, G., Rupprecht, R., Ferrari, U., Zieglgänsberger, W. & Parsons, C. G. The N-methyl-d-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner. Neurosci. Lett. 306, 81–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Aracava, Y., Pereira, E. F. R., Maelicke, A. & Albuquerque, E. X. Memantine blocks α7* nicotinic acetylcholine receptors more potently than N-methyl-d-aspartate receptors in rat hippocampal neurons. J. Pharmacol. Exp. Ther. 312, 1195–1205 (2004).

    Article  PubMed  Google Scholar 

  142. Hamilton, A., Esseltine, J. L., DeVries, R. A., Cregan, S. P. & Ferguson, S. S. G. Metabotropic glutamate receptor 5 knockout reduces cognitive impairment and pathogenesis in a mouse model of Alzheimer’s disease. Mol. Brain 7, 40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Hamilton, A. et al. Chronic pharmacological mGluR5 inhibition prevents cognitive impairment and reduces pathogenesis in an Alzheimer disease mouse model. Cell Rep. 15, 1859–1865 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Um, J. W. et al. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer Aβ oligomer bound to cellular prion protein. Neuron 79, 887–902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Haas, L. T. et al. Silent allosteric modulation of mGluR5 maintains glutamate signaling while rescuing Alzheimer’s mouse phenotypes. Cell Rep. 20, 76–88 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Spurrier, J. et al. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q. Sci. Transl Med. 14, eabi8593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sturchler, E., Galichet, A., Weibel, M., Leclerc, E. & Heizmann, C. W. Site-specific blockade of RAGE-Vd prevents amyloid-β oligomer neurotoxicity. J. Neurosci. 28, 5149–5158 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li, S. & Stern, A. M. Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities. Mol. Psychiatry 27, 3182–3191 (2022).

    Article  PubMed  Google Scholar 

  149. Watkins, T. A. et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc. Natl Acad. Sci. USA 110, 4039–4044 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Osterloh, J. M. et al. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337, 481–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Summers, D. W., Frey, E., Walker, L. J., Milbrandt, J. & DiAntonio, A. DLK activation synergizes with mitochondrial dysfunction to downregulate axon survival factors and promote SARM1-dependent axon degeneration. Mol. Neurobiol. 57, 1146–1158 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Ghosh, A. S. et al. DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity. J. Cell Biol. 194, 751–764 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Larhammar, M. et al. Dual leucine zipper kinase-dependent PERK activation contributes to neuronal degeneration following insult. eLife 6, e20725 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Siu, M., Ghosh, A. S. & Lewcock, J. W. Dual leucine zipper kinase inhibitors for the treatment of neurodegeneration. J. Med. Chem. 61, 8078–8087 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Welsbie, D. S. et al. Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc. Natl Acad. Sci. USA 110, 4045–4050 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pozniak, C. D. et al. Dual leucine zipper kinase is required for excitotoxicity-induced neuronal degeneration. J. Exp. Med. 210, 2553–2567 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pichon, C. E. L. et al. Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci. Transl Med. 9, eaag0394 (2017).

    Article  PubMed  Google Scholar 

  158. Patel, S. et al. Discovery of dual leucine zipper kinase (DLK, MAP3K12) inhibitors with activity in neurodegeneration models. J. Med. Chem. 58, 401–418 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Katz, J. S. et al. A phase 1 study of GDC‐0134, a dual leucine zipper kinase inhibitor, in ALS. Ann. Clin. Transl. Neurol. 9, 50–66 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Larhammar, M., Huntwork-Rodriguez, S., Rudhard, Y., Sengupta-Ghosh, A. & Lewcock, J. W. The Ste20 family kinases MAP4K4, MINK1, and TNIK converge to regulate stress-induced JNK signaling in neurons. J. Neurosci. 37, 11074–11084 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bos, P. H. et al. Development of MAP4 kinase inhibitors as motor neuron-protecting agents. Cell Chem. Biol. 26, 1703–1715 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Coleman, M. P. & Freeman, M. R. Wallerian degeneration, WldS, and Nmnat. Annu. Rev. Neurosci. 33, 245–267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gilley, J., Orsomando, G., Nascimento-Ferreira, I. & Coleman, M. P. Absence of SARM1 rescues development and survival of NMNAT2-deficient axons. Cell Rep. 10, 1974–1981 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A. & Milbrandt, J. SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348, 453–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Figley, M. D. et al. SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration. Neuron 109, 1118–1136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Essuman, K. et al. The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93, 1334–1343 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Summers, D. W., DiAntonio, A. & Milbrandt, J. Mitochondrial dysfunction induces Sarm1-dependent cell death in sensory neurons. J. Neurosci. 34, 9338–9350 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Geisler, S. et al. Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139, 3092–3108 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Henninger, N. et al. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1. Brain 139, 1094–1105 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Turkiew, E., Falconer, D., Reed, N. & Höke, A. Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy. J. Peripher. Nerv. Syst. 22, 162–171 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Marion, C. M., McDaniel, D. P. & Armstrong, R. C. Sarm1 deletion reduces axon damage, demyelination, and white matter atrophy after experimental traumatic brain injury. Exp. Neurol. 321, 113040 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. White, M. A. et al. Sarm1 deletion suppresses TDP-43-linked motor neuron degeneration and cortical spine loss. Acta Neuropathol. Commun. 7, 166 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Bosanac, T. et al. Pharmacological SARM1 inhibition protects axon structure and function in paclitaxel-induced peripheral neuropathy. Brain 144, 3226–3238 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Hughes, R. O. et al. Small molecule SARM1 inhibitors recapitulate the SARM1−/− phenotype and allow recovery of a metastable pool of axons fated to degenerate. Cell Rep. 34, 108588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bratkowski, M. et al. Uncompetitive, adduct-forming SARM1 inhibitors are neuroprotective in preclinical models of nerve injury and disease. Neuron 110, 3711–3726.e16 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Verret, L. et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149, 708–721 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lam, A. D. et al. Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat. Med. 23, 678–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lynch, B. A. et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl Acad. Sci. USA 101, 9861–9866 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Crowder, K. M. et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proc. Natl Acad. Sci. USA 96, 15268–15273 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Custer, K. L., Austin, N. S., Sullivan, J. M. & Bajjalieh, S. M. Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J. Neurosci. 26, 1303–1313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sanchez, P. E. et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc. Natl Acad. Sci. USA 109, E2895–E2903 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Nygaard, H. B. et al. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer’s disease mouse model. Alzheimer’s Res. Ther. 7, 25 (2015).

    Article  Google Scholar 

  183. Yassa, M. A. et al. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. Neuroimage 51, 1242–1252 (2010).

    Article  PubMed  Google Scholar 

  184. Leal, S. L., Landau, S. M., Bell, R. K. & Jagust, W. J. Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline. eLife 6, e22978 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Bakker, A., Albert, M. S., Krauss, G., Speck, C. L. & Gallagher, M. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. Neuroimage Clin. 7, 688–698 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Bakker, A. et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74, 467–474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Vossel, K. et al. Effect of levetiracetam on cognition in patients with Alzheimer disease with and without epileptiform activity. JAMA Neurol. 78, 1345–1354 (2021).

    Article  PubMed  Google Scholar 

  188. Consortium, E. et al. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

    Article  Google Scholar 

  189. Braat, S. & Kooy, R. F. The GABAA receptor as a therapeutic target for neurodevelopmental disorders. Neuron 86, 1119–1130 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Dejanovic, B. et al. Exonic microdeletions of the gephyrin gene impair GABAergic synaptic inhibition in patients with idiopathic generalized epilepsy. Neurobiol. Dis. 67, 88–96 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Reinthaler, E. M. et al. Rare variants in γ‐aminobutyric acid type A receptor genes in rolandic epilepsy and related syndromes. Ann. Neurol. 77, 972–986 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Guina, J. & Merrill, B. Benzodiazepines I: upping the care on downers: the evidence of risks, benefits and alternatives. J. Clin. Med. 7, 17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Griessner, J. et al. Central amygdala circuit dynamics underlying the benzodiazepine anxiolytic effect. Mol. Psychiatry 26, 534–544 (2021).

    Article  PubMed  Google Scholar 

  194. McMackin, R. et al. Measuring network disruption in neurodegenerative diseases: new approaches using signal analysis. J. Neurol. Neurosurg. Psychiatry 90, 1011–1020 (2019).

    Article  PubMed  Google Scholar 

  195. Meltzer-Brody, S. et al. Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet 392, 1058–1070 (2018).

    Article  CAS  PubMed  Google Scholar 

  196. Haas, S. L. et al. Pharmacodynamic and pharmacokinetic effects of TPA023, a GABAA α2,3 subtype-selective agonist, compared to lorazepam and placebo in healthy volunteers. J. Psychopharmacol. 21, 374–383 (2007).

    Article  PubMed  Google Scholar 

  197. Buchanan, R. W. et al. A randomized clinical trial of MK-0777 for the treatment of cognitive impairments in people with schizophrenia. Biol. Psychiatry 69, 442–449 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Jacob, T. C. Neurobiology and therapeutic potential of α5-GABA type A receptors. Front. Mol. Neurosci. 12, 179 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Koh, M. T., Rosenzweig-Lipson, S. & Gallagher, M. Selective GABAA α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment. Neuropharmacology 64, 145–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  200. Bernardo, A. M. et al. Positive allosteric modulation of α5-GABA A receptor in the 5XFAD mouse model has cognitive and neurotrophic benefits. Preprint at bioRxiv https://doi.org/10.1101/2022.09.30.510361 (2022).

  201. Corbett, B. F. et al. Sodium channel cleavage is associated with aberrant neuronal activity and cognitive deficits in a mouse model of Alzheimer’s disease. J. Neurosci. 33, 7020–7026 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Osteen, J. D., Sampson, K., Iyer, V., Julius, D. & Bosmans, F. Pharmacology of the Nav1.1 domain IV voltage sensor reveals coupling between inactivation gating processes. Proc. Natl Acad. Sci. USA 114, 6836–6841 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jensen, H. S., Grunnet, M. & Bastlund, J. F. Therapeutic potential of Na(V)1.1 activators. Trends Pharmacol. Sci. 35, 113–118 (2013).

    Article  Google Scholar 

  204. Southwell, D. G. et al. Interneurons from embryonic development to cell-based therapy. Science 344, 1240622 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Baraban, S. C. et al. Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice. Proc. Natl Acad. Sci. USA 106, 15472–15477 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Hunt, R. F., Girskis, K. M., Rubenstein, J. L., Alvarez-Buylla, A. & Baraban, S. C. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nat. Neurosci. 16, 692–697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Martinez-Losa, M. et al. Nav1.1-overexpressing interneuron transplants restore brain rhythms and cognition in a mouse model of Alzheimer’s disease. Neuron 98, 75–89 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Tong, L. M. et al. Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Aβ accumulation. J. Neurosci. 34, 9506–9515 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Zhu, B., Eom, J. & Hunt, R. F. Transplanted interneurons improve memory precision after traumatic brain injury. Nat. Commun. 10, 5156 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2022).

    Article  PubMed  Google Scholar 

  211. Brandebura, A. N., Paumier, A., Onur, T. S. & Allen, N. J. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat. Rev. Neurosci. 24, 23–39 (2023).

    Article  CAS  PubMed  Google Scholar 

  212. Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Neuroscience 35, 369–389 (2012).

    CAS  Google Scholar 

  213. Mastellos, D. C., Ricklin, D. & Lambris, J. D. Clinical promise of next-generation complement therapeutics. Nat. Rev. Drug Discov. 18, 707–729 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ende, E. L. et al. Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study. J. Neuroinflamm. 19, 217 (2022).

    Article  Google Scholar 

  215. Kamitaki, N. et al. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 582, 577–581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Consortium, S.W.G. of the P.G., Sekar et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  Google Scholar 

  217. Lambert, J.-C. et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat. Genet. 41, 1094–1099 (2009).

    Article  CAS  PubMed  Google Scholar 

  218. Shi, Q. et al. Complement C3-deficient mice fail to display age-related hippocampal decline. J. Neurosci. 35, 13029–13042 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Stephan, A. H. et al. A dramatic increase of C1q protein in the CNS during normal aging. J. Neurosci. 33, 13460–13474 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Litvinchuk, A. et al. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron 100, 1337–1353.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Hammond, J. W. et al. Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis. Brain Behav. Immun. 87, 739–750 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Yin, C. et al. ApoE attenuates unresolvable inflammation by complex formation with activated C1q. Nat. Med. 25, 496–506 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhong, L. et al. TREM2 receptor protects against complement-mediated synaptic loss by binding to complement C1q during neurodegeneration. Immunity 56, 1794–1808 (2023).

    Article  CAS  PubMed  Google Scholar 

  224. Vukojicic, A. et al. The classical complement pathway mediates microglia-dependent remodeling of spinal motor circuits during development and in SMA. Cell Rep. 29, 3087–3100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Shi, Q. et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci. Transl Med. 9, eaaf6295 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Fonseca, M. I., Zhou, J., Botto, M. & Tenner, A. J. Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. J. Neurosci. 24, 6457–6465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Fonseca, M. I. et al. Cell-specific deletion of C1qa identifies microglia as the dominant source of C1q in mouse brain. J. Neuroinflamm. 14, 48 (2017).

    Article  Google Scholar 

  228. Pittock, S. J. et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 12, 554–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  229. Howard, J. F. et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 16, 976–986 (2017).

    Article  CAS  PubMed  Google Scholar 

  230. Carpanini, S. M. et al. Terminal complement pathway activation drives synaptic loss in Alzheimer’s disease models. Acta Neuropathol. Commun. 10, 99 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Gunner, G. et al. Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nat. Neurosci. 22, 1075–1088 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Park, J. et al. Microglial MERTK eliminates phosphatidylserine‐displaying inhibitory post‐synapses. EMBO J. 40, e107121 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Li, T. et al. A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO J. 39, e104136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Ding, X. et al. Loss of microglial SIRPα promotes synaptic pruning in preclinical models of neurodegeneration. Nat. Commun. 12, 2030 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Lehrman, E. K. et al. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 100, 120–134.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  237. Jonsson, T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  238. Condello, C., Yuan, P., Schain, A. & Grutzendler, J. Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques. Nat. Commun. 6, 6176 (2015).

    Article  CAS  PubMed  Google Scholar 

  239. Meilandt, W. J. et al. Trem2 deletion reduces late-stage amyloid plaque accumulation, elevates the Aβ42:Aβ40 ratio, and exacerbates axonal dystrophy and dendritic spine loss in the PS2APP Alzheimer’s mouse model. J. Neurosci. 40, 1956–1974 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wang, Y. et al. TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J. Exp. Med. 213, 667–675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Scott‐Hewitt, N. et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 39, e105380 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Filipello, F. et al. The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48, 979–991 (2018).

    Article  CAS  PubMed  Google Scholar 

  244. Rueda‐Carrasco, J. et al. Microglia‐synapse engulfment via PtdSer‐TREM2 ameliorates neuronal hyperactivity in Alzheimer’s disease models. EMBO J. 42, e113246 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Das, M. et al. Alzheimer risk-increasing TREM2 variant causes aberrant cortical synapse density and promotes network hyperexcitability in mouse models. Neurobiol. Dis. 186, 106263 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Brelstaff, J., Tolkovsky, A. M., Ghetti, B., Goedert, M. & Spillantini, M. G. Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell Rep. 24, 1939–1948.e4 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Fracassi, A. et al. TREM2‐induced activation of microglia contributes to synaptic integrity in cognitively intact aged individuals with Alzheimer’s neuropathology. Brain Pathol. 33, e13108 (2023).

    Article  CAS  PubMed  Google Scholar 

  248. Wang, S. et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J. Exp. Med. 217, e20200785 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Price, B. R. et al. Therapeutic Trem2 activation ameliorates amyloid-beta deposition and improves cognition in the 5XFAD model of amyloid deposition. J. Neuroinflamm. 17, 238 (2020).

    Article  Google Scholar 

  250. Lengerich, B. et al. A TREM2-activating antibody with a blood–brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat. Neurosci. 26, 416–429 (2023).

  251. Schlepckow, K. et al. Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region. EMBO Mol. Med. 12, e11227 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ellwanger, D. C. et al. Prior activation state shapes the microglia response to antihuman TREM2 in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 118, e2017742118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Weber, M. et al. Cognitive deficits, changes in synaptic function, and brain pathology in a mouse model of normal aging. eNeuro https://doi.org/10.1523/eneuro.0047-15.2015 (2015).

  254. Burke, S. N. & Barnes, C. A. Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 7, 30–40 (2006).

    Article  CAS  PubMed  Google Scholar 

  255. Li, Y. et al. Proteomic profile of mouse brain aging contributions to mitochondrial dysfunction, DNA oxidative damage, loss of neurotrophic factor, and synaptic and ribosomal proteins. Oxidative Med. Cell. Longev. 2020, 5408452 (2020).

    Google Scholar 

  256. Bulovaite, E. et al. A brain atlas of synapse protein lifetime across the mouse lifespan. Neuron 110, 4057–4073 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Peters, A., Sethares, C. & Luebke, J. I. Synapses are lost during aging in the primate prefrontal cortex. Neuroscience 152, 970–981 (2008).

    Article  CAS  PubMed  Google Scholar 

  258. Jacobs, B., Driscoll, L. & Schall, M. Life‐span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J. Comp. Neurol. 386, 661–680 (1997).

    Article  CAS  PubMed  Google Scholar 

  259. Pan, J., Ma, N., Yu, B., Zhang, W. & Wan, J. Transcriptomic profiling of microglia and astrocytes throughout aging. J. Neuroinflamm. 17, 97 (2020).

    Article  CAS  Google Scholar 

  260. Clarke, L. E. et al. Normal aging induces A1-like astrocyte reactivity. Proc. Natl Acad. Sci. USA 115, E1896–E1905 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Lopes, K. et al. Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. Nat. Genet. 54, 4–17 (2022).

    Article  CAS  PubMed  Google Scholar 

  262. Holtman, I. R. et al. Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol. Commun. 3, 31 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Miguel, Z. D. et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 600, 494–499 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Horowitz, A. M. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369, 167–173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Middeldorp, J. et al. Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol. 73, 1325 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Hannestad, J. et al. Safety and tolerability of GRF6019 in mild‐to‐moderate Alzheimer’s disease dementia. Alzheimer’s Dement. 6, e12115 (2020).

    Article  Google Scholar 

  269. Hannestad, J. et al. Safety and tolerability of GRF6019 infusions in severe Alzheimer’s disease: a phase II double-blind placebo-controlled trial. J. Alzheimer’s Dis. 81, 1649–1662 (2021).

    Article  CAS  Google Scholar 

  270. Gan, K. J. & Südhof, T. C. Specific factors in blood from young but not old mice directly promote synapse formation and NMDA-receptor recruitment. Proc. Natl Acad. Sci. USA 116, 12524–12533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Nanasi, T., Feng, M., Braithwaite, S. P. & Lehallier, B. Deep plasma proteomics reveal age‐related molecular pathways modulated by GRF6019 treatment in Alzheimer’s disease patients. Alzheimer’s Dement. https://doi.org/10.1002/alz.061948 (2022).

  272. Fu, H., Hardy, J. & Duff, K. E. Selective vulnerability in neurodegenerative diseases. Nat. Neurosci. 21, 1350–1358 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Finnema, S. J. et al. Imaging synaptic density in the living human brain. Sci. Transl Med. 8, 348ra96 (2016).

    Article  PubMed  Google Scholar 

  274. Onwordi, E. C. et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat. Commun. 11, 246 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Radhakrishnan, R. et al. In-vivo evidence of decreased synaptic density in schizophrenia: a [11C]UCB-J PET imaging study. Biol. Psychiatry 81, S389 (2017).

    Article  Google Scholar 

  276. Holmes, S. E. et al. Lower synaptic density is associated with depression severity and network alterations. Nat. Commun. 10, 1529 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Vanhaute, H. et al. In vivo synaptic density loss is related to tau deposition in amnestic mild cognitive impairment. Neurology 95, e545–e553 (2020).

    Article  CAS  PubMed  Google Scholar 

  278. Holland, N. et al. Synaptic loss in primary tauopathies revealed by [11C]UCB‐J positron emission tomography. Mov. Disord. 35, 1834–1842 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Mecca, A. P. et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimer’s Dement. 16, 974–982 (2020).

    Article  Google Scholar 

  280. Chen, M.-K. et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol. 75, 1215–1224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Radhakrishnan, R. et al. In vivo evidence of lower synaptic vesicle density in schizophrenia. Mol. Psychiatry 26, 7690–7698 (2021).

    Article  PubMed  Google Scholar 

  282. Mecca, A. P. et al. Synaptic density and cognitive performance in Alzheimer’s disease: a PET imaging study with [11C]UCB‐J. Alzheimer’s Dement. 18, 2527–2536 (2022).

    Article  CAS  Google Scholar 

  283. Chen, Z. et al. Synaptic loss in spinocerebellar ataxia type 3 revealed by SV2A positron emission tomography. Mov. Disord. 38, 978–989 (2023).

    Article  CAS  PubMed  Google Scholar 

  284. Zhang, J. et al. In vivo synaptic density loss correlates with impaired functional and related structural connectivity in Alzheimer’s disease. J. Cereb. Blood Flow Metab. 43, 977–988 (2023).

  285. Tang, Y. et al. Detection of changes in synaptic density in amyotrophic lateral sclerosis patients using 18F‐SynVesT‐1 positron emission tomography. Eur. J. Neurol. 29, 2934–2943 (2022).

    Article  PubMed  Google Scholar 

  286. Lleó, A. et al. Changes in synaptic proteins precede neurodegeneration markers in preclinical Alzheimer’s disease cerebrospinal fluid. Mol. Cell. Proteom. 18, 546–560 (2019).

    Article  Google Scholar 

  287. Duits, F. H. et al. Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer’s disease. Alzheimer’s Res. Ther. 10, 5 (2018).

    Article  Google Scholar 

  288. Chatterjee, M. et al. Contactin-2, a synaptic and axonal protein, is reduced in cerebrospinal fluid and brain tissue in Alzheimer’s disease. Alzheimer’s Res. Ther. 10, 52 (2018).

    Article  Google Scholar 

  289. Milà-Alomà, M. et al. CSF synaptic biomarkers in the preclinical stage of Alzheimer disease and their association with MRI and PET. Neurology 97, e2065–e2078 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Higginbotham, L. et al. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Sci. Adv. 6, eaaz9360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Kester, M. I. et al. Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer disease. JAMA Neurol. 72, 1275–1280 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Nilsson, J. et al. Cerebrospinal fluid biomarker panel for synaptic dysfunction in Alzheimer’s disease. Alzheimer’s Dement. 13, e12179 (2021).

    Google Scholar 

  293. Bader, J. M. et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease. Mol. Syst. Biol. 16, e9356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Pelkey, K. A. et al. Pentraxins coordinate excitatory synapse maturation and circuit integration of parvalbumin interneurons. Neuron 90, 661 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Chang, M. C. et al. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat. Neurosci. 13, 1090–1097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Xiao, M.-F. et al. A biomarker-authenticated model of schizophrenia implicating NPTX2 loss of function. Sci. Adv. 7, eabf6935 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Libiger, O. et al. Longitudinal CSF proteomics identifies NPTX2 as a prognostic biomarker of Alzheimer’s disease. Alzheimer’s Dement. 17, 1976–1987 (2021).

    Article  CAS  Google Scholar 

  298. Xiao, M.-F. et al. NPTX2 and cognitive dysfunction in Alzheimer’s disease. eLife 6, e23798 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Ende, E. L. et al. Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 91, 612–621 (2020).

    Article  PubMed  Google Scholar 

  300. Steenoven, I. et al. Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: a proteomic approach. Mol. Neurodegener. 15, 36 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Galasko, D. R., Smirnov, D. S., Salmon, D. P. & Alzheimer’s Disease Neuroimaging Initiative. Longitudinal change in CSF biomarkers, especially NPTX2, in non‐demented elderly predicts cognitive decline and conversion to dementia. Alzheimer’s Dement. https://doi.org/10.1002/alz.046475 (2020).

  302. Oeckl, P. et al. Targeted mass spectrometry suggests beta-synuclein as synaptic blood marker in Alzheimer’s disease. J. Proteome Res. 19, 1310–1318 (2020).

    Article  CAS  PubMed  Google Scholar 

  303. Oeckl, P. et al. Relationship of serum beta‐synuclein with blood biomarkers and brain atrophy. Alzheimer’s Dement. 19, 1358–1371 (2022).

  304. Vrillon, A. et al. Plasma neuregulin 1 as a synaptic biomarker in Alzheimer’s disease: a discovery cohort study. Alzheimer’s Res. Ther. 14, 71 (2022).

    Article  CAS  Google Scholar 

  305. Tian, C. et al. Blood extracellular vesicles carrying synaptic function‐ and brain‐related proteins as potential biomarkers for Alzheimer’s disease. Alzheimer’s Dement. 19, 909–923 (2023).

    Article  CAS  Google Scholar 

  306. Winston, C. N. et al. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimer’s Dement. 3, 63–72 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors thank C. Bohlen, F. Hinz, M.-C. Tsai, F. Yeh, D. Gray and M. Figley for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Borislav Dejanovic or Jesse E. Hanson.

Ethics declarations

Competing interests

B.D. is a full-time employee of Vigil Neuroscience. M.S. is scientific cofounder and member of the scientific advisory board of Neumora Therapeutics and serves on the scientific advisory board of Biogen, Vanqua Bio, ArcLight Therapeutics, Proximity Therapeutics and Cerevel Therapeutics. J.E.H. is a full-time employee of Genentech, a member of the Roche Group.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Karl Giese and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Astrocytes

A type of glial cell located in the CNS, responsible for a multitude of tasks such as supplying neurons with nutrients, managing the function of synapses, maintaining the balance of extracellular ions and chemicals and preserving the structural integrity of the blood–brain barrier.

Interneurons

Inhibitory neurons that form nodes within neural circuitry and regulate neuronal activity by releasing the neurotransmitter GABA, which inhibits firing of other neurons.

Medial ganglionic eminence

(MGE). Structure in the developing nervous system that produces inhibitory interneurons, which disperse widely throughout the brain.

Membrane attack complex

A complex of complement proteins that forms cytolytic pores in the plasma membrane of targeted cells such as pathogens.

Microglia

Resident immune cells of the CNS that respond to pathogens and damage and can engage in phagocytosis of protein aggregates, cellular structures and other substrates.

Neurofilament light

Neuronal structural protein that is located primarily within myelinated axons.

Synaptic plasticity

The ability of synapses to modify their strength over time in response to differing levels of activity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dejanovic, B., Sheng, M. & Hanson, J.E. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 23, 23–42 (2024). https://doi.org/10.1038/s41573-023-00823-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-023-00823-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing