Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stem and progenitor cell–based therapy of the human central nervous system

Abstract

Multipotent neural stem cells, capable of giving rise to both neurons and glia, line the cerebral ventricles of all adult animals, including humans. In addition, distinct populations of nominally glial progenitor cells, which also have the capacity to generate several cell types, are dispersed throughout the subcortical white matter and cortex. A number of approaches have evolved for using neural progenitor cells in cell therapy. Four strategies are especially attractive for clinical translation: first, transplantation of oligodendrocyte progenitor cells as a means of treating the disorders of myelin; second, transplantation of phenotypically restricted neuronal progenitor cells to treat diseases of discrete loss of a single neuronal phenotype, such as Parkinson disease; third, implantation of mixed progenitor pools to treat diseases characterized by the loss of several discrete phenotypes, such as spinal cord injury; and fourth, mobilization of endogenous neural progenitor cells to restore neurons lost as a result of neurodegenerative diseases, in particular Huntington disease. Together, these may present the most compelling strategies and near-term disease targets for cell-based neurological therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Stem and progenitor cells of the adult human brain.

Katie Ris

Figure 2: Sources, isolation and use of defined progenitor phenotypes.

Katie Ris

Figure 3: Neonatal xenograft of human OPCs myelinates congenitally demyelinated forebrain.
Figure 4: Compensatory and induced neuronal recruitment to the adult brain.

Katie Ris

References

  1. 1

    Goldman, S. Adult neurogenesis: from canaries to the clinic. J. Neurobiol. 36, 267–286 (1998).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Gage, F.H. Neurogenesis in the adult brain. J. Neurosci. 22, 612–613 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Kirschenbaum, B. et al. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb. Cortex 4, 576–589 (1994).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Pincus, D.W. et al. Fibroblast growth factor-2/brain-derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells. Ann. Neurol. 43, 576–585 (1998).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Roy, N.S. et al. In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat. Med. 6, 271–277 (2000).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Lindvall, O., Kokaia, Z. & Martinez-Serrano, A. Stem cell therapy for human neurodegenerative disorders. Nat. Med. 10 suppl., S42–S50 (2004).

    PubMed  Article  CAS  Google Scholar 

  8. 8

    Goldman, S.A. Directed mobilization of endogenous neural progenitor cells: the intersection of stem cell biology and gene therapy. Curr. Opin. Mol. Ther. 6, 466–472 (2004).

    PubMed  Google Scholar 

  9. 9

    Gage, F. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Alvarez-Buylla, A. & Garcia-Verdugo, J.M. Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Morshead, C.M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Weiss, S. et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599–7609 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Luskin, M.B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Lois, C. & Alvarez-Buylla, A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90, 2074–2077 (1993).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Levine, J.M., Reynolds, R. & Fawcett, J.W. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 24, 39–47 (2001).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Palmer, T.D., Markakis, E.A., Willhoite, A.R., Safar, F. & Gage, F.H. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J. Neurosci. 19, 8487–8497 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Roy, N.S. et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J. Neurosci. 19, 9986–9995 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Nunes, M.C. et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 9, 439–447 (2003).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Belachew, S. et al. Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J. Cell Biol. 161, 169–186 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Pincus, D.W. et al. In vitro neurogenesis by adult human epileptic temporal neocortex. Clin. Neurosurg. 44, 17–25 (1997).

    CAS  PubMed  Google Scholar 

  22. 22

    Kukekov, V. et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp. Neurol. 156, 333–344 (1999).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Roy, N.S. et al. Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J. Neurosci. Res. 59, 321–331 (2000).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Arsenijevic, Y. et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp. Neurol. 170, 48–62 (2001).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Palmer, T. et al. Progenitor cells from human brain after death. Nature 411, 42–43 (2001).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Goldman, S. Glia as neural progenitor cells. Trends Neurosci. 26, 590–596 (2003).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Goldman, S. & Sim, F. Neural progenitor cells of the adult forebrain. in Stem Cells: Nuclear Programming and Therapeutic Applications. Novartis Foundation Symposium 265, 66–92 (John Wiley, London, 2005).

    Google Scholar 

  28. 28

    Watt, F.M. Stem cell fate and patterning in mammalian epidermis. Curr. Opin. Genet. Dev. 11, 410–417 (2001).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Niemann, C. & Watt, F.M. Designer skin: lineage commitment in postnatal epidermis. Trends Cell Biol. 12, 185–192 (2002).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Loeffler, M. & Potten, C.S. Stem cells and cellular pedigrees. in Stem Cells (ed. Potten, C.S.) 1–28 (Academic Press, San Diego, 1997).

    Google Scholar 

  31. 31

    Potten, C.S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020 (1990).

    CAS  PubMed  Google Scholar 

  32. 32

    Garcia-Verdugo, J., Doetsch, F., Wichterle, H. & Alvarez-Buylla, A. Architecture and cell types of the adult subventricular zone: in search of the stem cells. J. Neurobiol. 36, 234–248 (1998).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Menezes, J.R., Smith, C.M., Nelson, K.C. & Luskin, M.B. The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol. Cell. Neurosci. 6, 496–508 (1995).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Palmer, T.D., Takahashi, J. & Gage, F.H. The adult rat hippocampus contains primordial neural stem cells. Mol. Cell. Neurosci. 8, 389–404 (1997).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Shihabuddin, L. et al. Intracerebral transplantation of adult mouse neural progenitor cells into the Niemann-Pick-A mouse leads to a marked decrease in lysosomal storage pathology. J. Neurosci. 24, 10642–10651 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Vescovi, A.L., Reynolds, B.A., Fraser, D.D. & Weiss, S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966 (1993).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Palmer, T.D., Ray, J. & Gage, F.H. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell. Neurosci. 6, 474–486 (1995).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Gritti, A. et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Flax, J. et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16, 1033–1039 (1998).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Keyoung, H.M. et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat. Biotechnol. 19, 843–850 (2001).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Vescovi, A. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human stem cells lines by epigenetic stimulation. Exp. Neurol. 156, 71–83 (1999).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Carpenter, M. et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol. 158, 265–278 (1999).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Svendsen, C., Caldwell, M. & Ostenfeld, T. Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 9, 499–513 (1999).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Brustle, O. et al. Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat. Biotechnol. 16, 1040–1044 (1998).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    Fricker, R. et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14720–14725 (2000).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Lee, A. et al. Isolation of neural stem cells from the postnatal cerebellum. Nat. Neurosci. 8, 723–729 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Rietze, R. et al. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739 (2001).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Capela, A. & Temple, S. LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35, 865–875 (2002).

    PubMed  Article  Google Scholar 

  51. 51

    Wang, S. et al. Isolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the T alpha 1 tubulin promoter. Nat. Biotechnol. 16, 196–201 (1998).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. & Prasher, D. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Gloster, A. et al. The Tα1-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice. J. Neurosci. 14, 7319–7330 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Kawaguchi, A. et al. Nestin-GFP transgenic mice: Visualization of the self-renewal and multipotency of CNS stem cells. Mol. Cell. Neurosci. 17, 259–273 (2001).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Wang, S., Roy, N.S., Benraiss, A. & Goldman, S.A. Promoter-based isolation and fluorescence-activated sorting of mitotic neuronal progenitor cells from the adult mammalian ependymal/subependymal zone. Dev. Neurosci. 22, 167–176 (2000).

    PubMed  Article  Google Scholar 

  56. 56

    Mignone, J., Kukekov, V., Chiang, A., Steindler, D. & Enikolopov, G. Neural stem and progenitor cells in nestin-GFP transgenic mice. J. Comp. Neurol. 469, 311–324 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Scolding, N. et al. Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain [see comments] 121, 2221–2228 (1998).

    PubMed  Article  Google Scholar 

  58. 58

    Kaye, E. Update on genetic disorders affecting white matter. Pediatr. Neurol. 24, 11–24 (2001).

    CAS  PubMed  Article  Google Scholar 

  59. 59

    Powers, J. The leukodystrophies: overview and classification. in Myelin Biology and Disorders, vol. 2 (ed. Lazzarini, R.A.) 663–690 (Elsevier Academic Press, San Diego, 2004).

    Google Scholar 

  60. 60

    Back, S. & Rivkees, S. Emerging concepts in periventricular white matter injury. Semin. Perinatol. 6, 405–414 (2004).

    Article  Google Scholar 

  61. 61

    Follett, P. et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J. Neurosci. Res. 24, 4412–4420 (2004).

    CAS  Google Scholar 

  62. 62

    Robinson, S. et al. Developmental changes induced by graded prenatal systemic hypoxic-ischemic insults in rats. Neurobiol. Dis. 18, 568–581 (2005).

    CAS  PubMed  Article  Google Scholar 

  63. 63

    Windrem, M.S. et al. Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J. Neurosci. Res. 69, 966–975 (2002).

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Windrem, M.S., Roy, N., Nunes, M. & Goldman, S.A. Identification, selection, and use of human oligodendrocyte progenitor cells. in Neural Stem Cells for Brain Repair (eds. Zigova, T., Snyder, E.) 69–88 (Humana, NY, 2003).

    Google Scholar 

  65. 65

    Windrem, M.S. et al. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat. Med. 10, 93–97 (2004).

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Yandava, B.D., Billinghurst, L.L. & Snyder, E.Y. “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA 96, 7029–7034 (1999).

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Snyder, E.Y., Taylor, R.M. & Wolfe, J.H. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374, 367–370 (1995).

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Urayama, A., Grubb, J., Sly, W. & Banks, W. Developmentally regulated mannose 6-phophate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proc. Natl. Acad. Sci. USA 101, 12658–12663 (2004).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Pluchino, S. et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422, 688–694 (2003).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Pluchino, S., Furlan, R. & Martino, G. Cell-based remyelinating therapies in multiple sclerosis: evidence from experimental studies. Curr. Opin. Neurol. 17, 247–255 (2004).

    PubMed  Article  Google Scholar 

  71. 71

    Franklin, R.J. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 705–714 (2002).

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Jenner, P. & Olanow, C.W. Understanding cell death in Parkinson's disease. Ann. Neurol. 44, S72–S84 (1998).

    CAS  PubMed  Article  Google Scholar 

  73. 73

    Olanow, C., Kordower, J. & Freeman, T. Fetal nigral transplantation as a therapy for Parkinson's disease. Trends Neurosci. 19, 102–109 (1996).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Lindvall, O. Cerebral implantation in movement disorders: state of the art. Mov. Disord. 14, 201–205 (1999).

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Bjorklund, A. & Lindvall, O. Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3, 537–544 (2000).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Hagell, P. et al. Dyskinesias following neural transplantation in Parkinson's disease. Nat. Neurosci. 5, 627–628 (2002).

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Studer, L., Tabar, V. & McKay, R. Transplantation of expanded mesencephalic precursors leads to recovery in Parkinsonian rats. Nat. Neurosci. 1, 290–295 (1998).

    CAS  PubMed  Article  Google Scholar 

  78. 78

    Sawamoto, K. et al. Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J. Neurosci. 21, 3895–3903 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Ye, W., Shimamura, K., Rubenstein, J., Hynes, M. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotinergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    CAS  PubMed  Article  Google Scholar 

  80. 80

    Lee, S-H., Lumelsky, N., Studer, L., Auerbach, J. & McKay, R. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679 (2000).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Studer, L. et al. Enhanced proliferation, survival and dopaminergic differentiation of CNS precursors in lowered oxygen. J. Neurosci. 20, 7377–7383 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Kim, J. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50–56 (2002).

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Takagi, Y. et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J. Clin. Invest. 115, 102–108 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84

    Goridis, C. & Rohrer, H. Specification of catecholaminergic and serotonergic neurons. Nat. Neurosci. 3, 531–541 (2002).

    CAS  Article  Google Scholar 

  85. 85

    Bjorklund, L. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA 99, 2344–2349 (2002).

    CAS  PubMed  Article  Google Scholar 

  86. 86

    Nistor, G., Totoiu, M., Haque, N.S., Carpenter, M. & Kierstead, H. Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord contusion. Glia 49, 385–396 (2005).

    PubMed  Article  Google Scholar 

  87. 87

    Roy, N. et al. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp. Neurol. (in the press) (2005).

  88. 88

    Li, M., Pevny, L., Lovell-Badge, R. & Smith, A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974 (1998).

    CAS  PubMed  Article  Google Scholar 

  89. 89

    Hu, F. & Strittmatter, S.M. Regulating axon growth within the postnatal central nervous system. Semin. Perinatol. 28, 371–378 (2004).

    PubMed  Article  Google Scholar 

  90. 90

    Gao, Y. et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44, 609–621 (2004).

    CAS  PubMed  Article  Google Scholar 

  91. 91

    Nikulina, E., Tidwell, J.L., Dai, H.N., Bregman, B.S. & Filbin, M.T. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc. Natl. Acad. Sci. USA 101, 8786–8790 (2004).

    CAS  PubMed  Article  Google Scholar 

  92. 92

    Hofstetter, C. et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentaition improves outcome. Nat. Neurosci. 8, 346–353 (2005).

    CAS  PubMed  Article  Google Scholar 

  93. 93

    Ogawa, Y. et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J. Neurosci. Res. 69, 925–933 (2002).

    CAS  PubMed  Article  Google Scholar 

  94. 94

    Ourednik, J., Ourednik, V., Lynch, W.P., Schachner, M. & Snyder, E. Neural stem cells display an inherent mechanism for rescuing dysfunctional neuons. Nat. Biotechnol. 20, 1103–1110 (2002).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    Han, S.W., Liu, Y., Tyler-Polsz, C., Rao, M.S. & Fischer, I. Transplantation of glial-restricted precursor cells into the adult spinal cord. Glia 45, 1–16 (2004).

    PubMed  Article  Google Scholar 

  96. 96

    Brustle, O. et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 10, 821–827 (2004).

    CAS  PubMed  Article  Google Scholar 

  98. 98

    Pearse, D. et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610–616 (2004).

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Kerr, D.A. et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J. Neurosci. 23, 5131–5140 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Li, X. et al. Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215–221 (2005).

    PubMed  Article  CAS  Google Scholar 

  101. 101

    Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    CAS  PubMed  Article  Google Scholar 

  102. 102

    Roy, N. et al. Telomerase-immortalization of neuronally restricted progenitor cells derived from the human fetal spinal cord. Nat. Biotechnol. 22, 297–305 (2004).

    CAS  PubMed  Article  Google Scholar 

  103. 103

    Arber, S. et al. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 (1999).

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Nakano, T., Windrem, M., Zappavigna, V. & Goldman, S.A. Identification of a conserved 125 base-pair Hb9 enhancer that specifies gene expression to spinal motor neurons. Dev. Biol. (in the press) (2005).

  105. 105

    Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002).

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Parent, J., Vexler, Z., Gong, C., Derugin, N. & Ferriero, D. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813 (2002).

    PubMed  Article  Google Scholar 

  107. 107

    Jin, K. et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol. Cell. Neurosci. 24, 171–189 (2003).

    CAS  PubMed  Article  Google Scholar 

  108. 108

    Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous progenitors. Cell 110, 429–441 (2002).

    CAS  PubMed  Article  Google Scholar 

  109. 109

    Curtis, M.A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl. Acad. Sci. USA 100, 9023–9027 (2003).

    CAS  PubMed  Article  Google Scholar 

  110. 110

    Jin, K. et al. Increased hippocampal neurogenesis in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 101, 343–347 (2004).

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Magavi, S., Leavitt, B. & Macklis, J. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Chen, J., Magavi, S. & Macklis, J. Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc. Natl. Acad. Sci. USA 101, 16357–16362 (2004).

    CAS  PubMed  Article  Google Scholar 

  113. 113

    Kuhn, H.G., Winkler, J., Kempermann, G., Thal, L.J. & Gage, F.H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 17, 5820–5829 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114

    Fallon, J. et al. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc. Natl. Acad. Sci. USA 97, 14686–14691 (2000).

    CAS  PubMed  Article  Google Scholar 

  115. 115

    Jin, K. et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950 (2002).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Cao, L. et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat. Genet. 36, 827–835 (2004).

    CAS  PubMed  Article  Google Scholar 

  117. 117

    Jin, K., Mao, X.O., Sun, Y., Xie, L. & Greenberg, D.A. Stem cell factor stimulates neurogenesis in vitro and in vivo. J. Clin. Invest. 110, 311–319 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118

    Packer, M. et al. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc. Natl Acad. Sci. USA 100, 9566–9571 (2003).

    CAS  PubMed  Article  Google Scholar 

  119. 119

    Cameron, H.A., Hazel, T.G. & McKay, R.D. Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 36, 287–306 (1998).

    CAS  PubMed  Article  Google Scholar 

  120. 120

    Aberg, M., Aberg, D., Hedbacker, H., Oscarsson, J. & Eriksson, P. Peripheral infusion of IGF-1 selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. 20, 2896–2903 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121

    Malberg, J., Eisch, A., Nestler, E. & Duman, R. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122

    Kirschenbaum, B. & Goldman, S.A. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl. Acad. Sci. USA 92, 210–214 (1995).

    CAS  PubMed  Article  Google Scholar 

  123. 123

    Goldman, S., Kirschenbaum, B., Harrison-Restelli, C. & Thaler, H. Neuronal precursor cells of the adult rat ventricular zone persist into senescence, with no change in spatial extent or BDNF response. J. Neurobiol. 32, 554–566 (1997).

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Louissaint, A., Rao, S., Leventhal, G. & Goldman, S.A. Coordinated ineraction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).

    CAS  PubMed  Article  Google Scholar 

  125. 125

    Ahmed, S., Reynolds, B.A. & Weiss, S. BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J. Neurosci. 15, 5765–5778 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126

    Benraiss, A., Chmielnicki, E., Lerner, K., Roh, D. & Goldman, S.A. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J. Neurosci. 21, 6718–6731 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127

    Pencea, V., Bingaman, K.D., Wiegand, S.J. & Luskin, M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci. 21, 6706–6717 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128

    Ivkovic, S. & Ehrlich, M. Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J. Neurosci. 19, 5409–5419 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129

    Gross, R.E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    CAS  PubMed  Article  Google Scholar 

  130. 130

    Gomes, W.A., Mehler, M.F. & Kessler, J.A. Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev. Biol. 255, 164–177 (2003).

    CAS  PubMed  Article  Google Scholar 

  131. 131

    Mabie, P.C. et al. Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial-astroglial progenitor cells. J. Neurosci. 17, 4112–4120 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132

    Zimmerman, L.B., De Jesus-Escobar, J.M. & Harland, R.M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    CAS  PubMed  Article  Google Scholar 

  133. 133

    Lim, D. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    CAS  PubMed  Article  Google Scholar 

  134. 134

    Chmielnicki, E. & Goldman, S.A. Induced neurogenesis by endogenous progenitor cells in the adult mammalian brain. Prog. Brain Res. 138, 451–464 (2002).

    CAS  PubMed  Article  Google Scholar 

  135. 135

    Chmielnicki, E., Benraiss, A., Economides, A.N. & Goldman, S.A. Adenovirally expressed noggin and brain-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone. J. Neurosci. 24, 2133–2142 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136

    Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    CAS  PubMed  Article  Google Scholar 

  137. 137

    Cho, S.R., Chmielnicki, E. & Goldman, S.A. Adenoviral co-delivery of BDNF and noggin induces striatal neuronal replacement and delays motor impairment in a transgenic model of Huntington's Disease. Mol. Ther. 9, S86–S87 (2004).

    Google Scholar 

  138. 138

    Singh, S. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  139. 139

    Singh, S. et al. Identification of human brain tumor initiating cells. Nature 432, 396–401 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140

    Craig, C.G. et al. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16, 2649–2658 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141

    Notlebohm, F. The neural basis of birdsong. PLoS Biology 3, e164 (2005).

  142. 142

    Svendsen, C.N., Bhattacharyya, A. & Tai, Y.T. Neurons from stem cells: preventing an identity crisis. Nat. Rev. Neurosci. 2, 831–834 (2001).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

I thank M. Nedergaard, N. Roy, M. Windrem, F. Sim, A. Benraiss, S. Wang, E. Chmielnicki and S.-R. Cho for their contributions to the studies discussed, and apologize to the many authors whose relevant work I have not been able to cite in this short review. My thanks to F. Sim for expert help in illustration. Supported by the US National Institutes of Health–National Institute of Neurological Disorders and Stroke, the National Multiple Sclerosis Society, the New York Spinal Cord Injury Research Program, The A–T Children's Project and the CNS foundation, Berlex Bioscience and Merck Research Laboratories.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steve Goldman.

Ethics declarations

Competing interests

S.G. receives laboratory support from Merck Research Laboratories and Berlex Bioscience, and is a consultant to both Merck and Q Therapeutics.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldman, S. Stem and progenitor cell–based therapy of the human central nervous system. Nat Biotechnol 23, 862–871 (2005). https://doi.org/10.1038/nbt1119

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing