Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular Engineering for the Treatment of Metabolic Disorders: Prospects for Therapy in Diabetes

Abstract

Significant advances in the areas of identification of disease susceptibility genes and gene transfer technologies have fueled new initiatives in cellular engineering as a means for treating metabolic disease. This article utilizes new findings from such work as the blueprint for a discussion of the prospects for gene therapy in diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, A.D. 1992. Human gene therapy comes of age. Nature 357: 455–460.

    Article  CAS  Google Scholar 

  2. Ledley, F.D. 1990. Clinical application of somatic gene therapy in inborn errors of metabolism. J. Inher. Metab. Dis. 13: 597–616.

    Article  CAS  Google Scholar 

  3. Lacy, P.E. and Scharp, D.W. 1986. Islet transplantation in treating diabetes. Ann. Rev. Med. 37: 33–406.

    Article  CAS  Google Scholar 

  4. Posselt, A.M., Barker, C.F., Tomaszewski, J.E., Markmann, J.F., Choti, M.A. and Naji, A. 1990. Induction of donor-specific unresponsiveness by intrathymic islet transplantation. Science 249: 1293–1295.

    Article  CAS  Google Scholar 

  5. Sullivan, S.J., Maki, T., Borland, K.M., Mahoney, M.D., Solomon, B.A., Muller, T.E., Monaco, A.P. and Chick, W.L. 1991. Biohybrid artificial pancreas: Long-term implantation studies in diabetic, pancreatectomized dogs. Science 252: 718–721.

    Article  CAS  Google Scholar 

  6. Lacy, P.F., Hegre, O.D., Gerasimidi-Vazeou, A., Gentile, F.T. and Dionne, K.E. 1991. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254: 1782–1785.

    Article  CAS  Google Scholar 

  7. Lanza, R.P., Borland, K.M., Lodge, P., Carretta, M., Sullivan, S.J., Muller, T.E., Solomon, B.A., Maki, T., Monaco, A.P. and chick, W.L. 1992. Treatment of severely diabetic pancreatectomized dogs using a diffusion-based hybrid pancreas. Diabetes 41: 886–889.

    Article  CAS  Google Scholar 

  8. Chick, W.L., Warren, S., Chute, R.N., Like, A.A., Lauris, V. and Kitchen, K.C. 1977. A transplantable insulinoma in the rat. Proc. Natl. Acad. Sci. USA 74: 628–632.

    Article  CAS  Google Scholar 

  9. Efrat, S., Linde, S., Kofod, H., Spector, D., Delannoy, M., Grant, S., Hanaban, D. and Baekkeskov, S. 1988. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc. Natl. Acad. Sci. USA 85: 9037–9041.

    Article  CAS  Google Scholar 

  10. Miyazaki, J.I., Araki, K., Yamato, E., Ikegami, H., Asano, T., Shibasaki, Y., Oka, Y. and Yamamura, K.I. 1990. Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: Special reference to expression of glucose transporter isoforms. Endocrinology 127: 126–132.

    Article  CAS  Google Scholar 

  11. Meglasson, M.D. and Matschinsky, F.M. 1986. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes/Metabolism Rev. 2: 163–214.

    Article  CAS  Google Scholar 

  12. Prentki, M. and Matschinsky, F.M. 1987. Ca2+, cAMP, and phospholipid derived messengers in coupling, mechanisms of insulin secretion. Physiol. Rev. 67: 1185–1248.

    Article  CAS  Google Scholar 

  13. Turk, J., Wolf, B.A. and McDaniel, M.L. 1987. The role of phospholipid-derived mediators including arachidonic acid, its metabolites, and inositoltrisphosphate and of intracellular Ca2+ in glucose-induced insulin secretion by pancreatic islets. Prog. Lipid Res. 26: 125–181.

    Article  CAS  Google Scholar 

  14. MacDonald, M.J. 1990. Elusive proximal signals of β-cells for insulin secretion. Diabetes 39: 1461–1466.

    Article  CAS  Google Scholar 

  15. Ghosh, A., Ronner, P., Cheong, E., Khalid, P. and Matschinsky, F.M. 1991. The role of ATP and free ADP in metabolic coupling during fuel-stimulated insulin release from islet β-cells in the isolated perfused pancreas. J. Biol. Chem. 266: 22887–22892.

    CAS  PubMed  Google Scholar 

  16. Prentki, M., Vischer, S., Glennon, M.C., Regazzi, R., Deeney, J.T. and Corkey, B.E. 1992. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J. Biol. Chem. 267: 5802–5810.

    CAS  PubMed  Google Scholar 

  17. Bell, G.I., Kayano, T., Buse, J.B., Burant, C.F., Takeda, J., Lin, D., Fukumoto, H. and Seino, S. 1990. Molecular biology of mammalian glucose transporters. Diabetes Care 13: 198–208.

    Article  CAS  Google Scholar 

  18. Thorens, B., Charron, M.J. and Lodish, H.F. 1990. Molecular physiology of glucose transporters. Diabetes Care 13: 209–218.

    Article  CAS  Google Scholar 

  19. Unger, R.H. 1991. Diabetic hyperglycemia: Link to impaired glucose transport in pancreatic β-cells. Science 251: 1200–1205.

    Article  CAS  Google Scholar 

  20. Clark, S.A., Burnham, B.L. and Chick, W.L. 1990. Modulation of glucose-induced insulin secretion from a rat clonal β-cell line. Endocrinology 127: 2779–2788.

    Article  CAS  Google Scholar 

  21. Whitesell, R.R., Powers, A.C., Regen, D.M. and Abumrad, N.A. 1991. Transport and metabolism of glucose in an insulin-secreting cell line, βTC-1. Biochemistry 30: 11560–11566.

    Article  CAS  Google Scholar 

  22. Fleischer, N., Leiser, M., Surana, M., Tal, M. and Efrat, S. 1992. βTC7, a murine β-cell line with correctly regulated insulin secretion. Diabetes 41: 5A (abstract).

    Google Scholar 

  23. German, M.S. and Rutter, W.J. 1991. The role of the glucose transporter and glucokinase in β-cell transcriptional response to glucose. Diabetes 40: 163A (abstract).

    Google Scholar 

  24. Madsen, O.D., Andersen, L.C., Michelsen, B., Owerbach, D., Larsson, L.I., Lernmark, A. and Steiner, D.F. 1988. Tissue-specifIc expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo. Proc. Natl. Acad. Sci. USA 85: 6652–6656.

    Article  CAS  Google Scholar 

  25. Moore, H.P., Walker, M.D., Lee, F. and Kelly, R.B. 1983. Expressing a human proinsulin cDNA in a mouse ACTH-secreting cell. Intracellular storage, proteolytic processing, and secretion on stimulation. Cell 35: 531–538.

    Article  CAS  Google Scholar 

  26. Smeekens, S.P. and Steiner, D.F. 1990. Identification of a human insulin-oma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J. Biol. Chem. 265: 2997–3000.

    CAS  Google Scholar 

  27. Hakes, D.J., Birch, N.P., Mezey, A. and Dixon, J.E. 1991. Isolation of two complementary deoxyribonucleic acid clones from a rat insulinoma cell linebased on similarities to Kex2 and furin sequences and the specific localization of each transcript to endocrine and neuroendocrine tissues in rat. Endocrinology 129: 3053–3063.

    Article  CAS  Google Scholar 

  28. Selden, R.F., Skoskiewicz, M.J., Russell, P.S. and Goodman, H.M. 1987. Regulation of insulin gene expression: Implications for gene therapy. N. Engl. J. Med. 317: 1067–1076.

    Article  CAS  Google Scholar 

  29. Luini, A., Lewis, D., Guild, S., Corda, D. and Axelrod, J. 1985. Hormone secretagogues increase cytosolic calcium by increasing cAMP in corticotropin-secreting cells. Proc. Natl. Acad. Sci. USA 82: 8034–8038.

    Article  CAS  Google Scholar 

  30. Hughes, S.D., Quaade, C., Milburn, J.L., Cassidy, L.C. and Newgard, C.B. 1991. Expression of normal and novel glucokinase mRNAs in anterior pituitary and islet cells. J. Biol. Chem. 266: 4521–4530.

    CAS  PubMed  Google Scholar 

  31. Hughes, S.D., Johnson, J.H., Quaade, C. and Newgard, C.B. 1992. Engineering of glucose-stimulated insulin secretion and biosynthesis in non-islet cells. Proc. Natl. Acad. Sci. USA 89: 688–692.

    Article  CAS  Google Scholar 

  32. Hughes, S.D., Quaade, C., Johnson, J.H., Ferber, S. and Newgard, C.B. 1992. Divergent effects of glucose on GLUT-1 versus GLUT-2 transfected AtT-20ins cells despite similar rates of glucose usage. Diabetes 41: 103A (abstract).

    Google Scholar 

  33. Ferber, S., Gross, D.J., Villa-Komaroff, L., Danehy, F., Vollenweider, F., Meyer, K., Loeken, M.R., Kahn, C.R. and Halban, P.A. 1991. Heterogeneity of expression and secretion of native and mutant [Asp Bl0] insulin in AtT-20 cells. Mol. Endocrinol. 5: 319–326.

    Article  CAS  Google Scholar 

  34. Waddell, I.D. and Burchell, A. 1988. The microsomal glucose-6-phosphatase enzyme of pancreatic islets. Biochem. J. 255: 471–476.

    Article  CAS  Google Scholar 

  35. Khan, A., Chandramouli, V., Ostenson, C.G., Low, H., Landau, B.R. and Efendic, S. 1990. Glucose cycling in islets from healthy and diabetic rats. Diabetes 39: 456–459.

    Article  CAS  Google Scholar 

  36. Friedmann, T. 1989. Progress toward human gene therapy. Science 244: 1275–1281.

    Article  CAS  Google Scholar 

  37. Scharfmann, R., Axelrod, J.H. and Verma, I.M. 1991. Long term in vivo expression of retrovirus-mediated gene transfer in mouse fibroblast implants. Proc. Natl. Acad. Sci. USA 88: 4626–4630.

    Article  CAS  Google Scholar 

  38. Rosen, O.M. 1987. After insulin binds. Science 237: 1452–1458.

    Article  CAS  Google Scholar 

  39. Bell, G.I. 1991. Molecular defects in diabetes mellitus. Diabetes 40: 413–422.

    Article  CAS  Google Scholar 

  40. Garvey, W.T. 1992. Glucose transport and NIDDM. Diabetes Care 15: 396–417.

    Article  CAS  Google Scholar 

  41. Rothman, D.L., Shulman, R.G. and Shulman, G.I. 1992. 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate: Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin dependent diabetes mellitus. J. Clin. Invest. 89: 1069–1075.

    Article  CAS  Google Scholar 

  42. Wolff, J.A., Malone, R.W., Williams, P., Chang, W., Ascadi, G., Jani, A. and Felgnes, P.L. 1990. Direct gene transfer into mouse muscle in vivo. Science 247: 1465–1468.

    Article  CAS  Google Scholar 

  43. Barr, E. and Leiden, J.M. 1991. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 254: 1507–1509.

    Article  CAS  Google Scholar 

  44. Dhawan, J., Pan, L.C., Pavlath, G.K., Travis, M.A., Lanctot, A.M. and Blau, H.M. 1991. Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science 254: 1509–1512.

    Article  CAS  Google Scholar 

  45. Matsutani, A., Koranyi, L., Cox, N. and Permutt, M.A. 1990. Polymorphisms of GLUT-2 and GLUT-4 genes: Use in evaluation of genetic susceptibility to NIDDM in blacks. Diabetes 39: 1534–1542.

    Article  CAS  Google Scholar 

  46. Alcolado, J.C., Baroni, M.G. and Li, S.R. 1991. Association between a restriction fragment length polymorphism at the liver/islet cell (GLUT-2) glucose transporter and familial type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 34: 234–236.

    Article  Google Scholar 

  47. Frougel, P., Vaxillaire, M., Sun, F., Vehlo, G., Zouali, H., Butel, M.O., Lesage, S., Vionnet, N., Clement, K., Fougerousse, F., Tanizawa, Y., Weissenbach, J., Beckmann, J.S., Lathrop, G.M., Passa, P., Permutt, M.A. and Cohen, D. 1992. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin dependent diabetes mellitus. Nature 356: 162–164.

    Article  Google Scholar 

  48. Vionnet, N., Stoffel, M., Takeda, J., Yasuda, K., Bell, G.I., Zouali, H., Lesage, S., Velho, G., Iris, F., Passa, P., Frouguel, P. and Cohen, D. 1992. Nonsense mutation in the glucokinase gene causes early-onset non-insulin dependent diabetes mellitus. Nature 356: 721–722.

    Article  CAS  Google Scholar 

  49. Stoffel, M., Froguel, P., Takeda, J., Zouali, H., Vionnet, N., Nishi, S., Weber, I.T., Harrison, R.W., Pilkis, S.J, Lesage, S., Vaxillaire, M., Velho, G., Sun, F., Iris, F., Passa, P., Cohen, D. and Bell, G.I. 1992. Human glucokinase gene: Isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc. Natl. Acad. Sci. USA In press.

  50. Magnuson, M.A. 1990. Glucokinase gene structure: Functional implications of molecular genetic studies. Diabetes 39: 523–527.

    Article  CAS  Google Scholar 

  51. Newgard, C.B., Quaade, C., Hughes, S.D. and Milburn, J.L. 1990. Glucokinase and glucose transporter expression in liver and islets: Implications for control of glucose homeostasis. Biochem. Soc. Trans. 18: 851–853.

    Article  CAS  Google Scholar 

  52. Tanizawa, Y., Matsutani, A., Chiu, K.C. and Permutt, M.A. 1992. Isolation of the human glucokinase gene, identification of polymorphic micro-satellite repeats, and direct genomic analysis in NIDDM patients. Diabetes 41: 14A (abstract).

    Google Scholar 

  53. Welsh, M., Claesson-Welsh, L., Hallberg, A., Welsh, N., Betsholtz, C., Arkhammar, P., Nilsson, T., Heldin, C.H. and Berggren, P.O. 1990. Coexpression of the platelet-derived growth factor (PDGF) B chain and the PDGF β receptor in isolated pancreatic islet cells stimulates DNA synthesis. Proc. Natl. Acad. Sci. USA 87: 5807–5811.

    Article  CAS  Google Scholar 

  54. Rosenfeld, M.A., Yoshimura, K., Trapnell, B.C., Yoneyama, K., Rosenthal, E.R., Dalemans, W., Fukayama, M., Bargon, J., Stier, L.E., Startford-Perricaudet, L., Perricaudet, M., Guggino, W.B., Pavirani, A., Lecocq, J.P. and Crystal, R.G. 1992. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68: 143–155.

    Article  CAS  Google Scholar 

  55. Van Doren, K., Hanahan, D. and Gluzman, Y. 1984. Infection of eucaryotic cells by helper-independent recombinant adenoviruses: Early region 1 is not obligatory for integration of viral DNA. J. Virol. 50: 606–614.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gomez-Foix, A.M., Coats, W.S., Baque, S., Gerard, R. and Newgard, C.B. 1992. Adenovirus-mediated muscle glycogen phosphorylase gene transfer into primary hepatocytes causes altered regulation of glycogen metabolism. Submitted.

    Google Scholar 

  57. Coats, W.S., Browner, M.F., Fletterick, R.J. and Newgard, C.B. 1991. An engineered liver glycogen phosphorylase with AMP allosteric activation. J. Biol. Chem. 266: 16113–16119.

    CAS  PubMed  Google Scholar 

  58. Ponder, K.P., Gupta, S., Leland, F., Darlington, G., Finegold, M., DeMayo, J., Ledley, F.D., Chowdhury, J.R. and Woo, S.L.C. 1991. Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc. Natl. Acad. Sci. USA 88: 1217–1221.

    Article  CAS  Google Scholar 

  59. Wilson, J.M., Chowdhury, N.R., Grossman, M., Wajsman, R., Epstein, A., Mulligan, R.C. and Chowdhury, J.R. 1990. Temporary amelioration of hyperlipidemia in low density lipoprotein receptor-deficient rabbits transplanted with genetically modified hepatocytes. Proc. Nail Acad. Sci. USA 87: 8437–8441.

    Article  CAS  Google Scholar 

  60. Liu, T.J., Kay, M.A., Darlington, G.J. and Woo, S.L.C. 1992. Reconstitution of enzymatic activity in hepatocytes of phenylalanine hydroxylase-deficient mice. Somat. Cell Mol. Genet. 18: 89–96.

    Article  CAS  Google Scholar 

  61. Wu, C.H., Wilson, J.M. and Wu, G.Y. 1989. Targeting genes: Delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J. Biol. Chem. 264: 16985–16987.

    CAS  PubMed  Google Scholar 

  62. Stratford-Perricaudet, L.D., Levrero, M., Chasse, J.-F., Perricaudet, M. and Briand, P. 1990. Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector. Hum. Gene. Ther. 1: 241–256.

    Article  CAS  Google Scholar 

  63. Gerard, R.D. and Meidell, R.S. 1991. The use of recombinant adenovirus vectors to deliver genes into vascular endothelial cells. J. Cell. Biochem. Suppl. 15C: 133 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newgard, C. Cellular Engineering for the Treatment of Metabolic Disorders: Prospects for Therapy in Diabetes. Nat Biotechnol 10, 1112–1120 (1992). https://doi.org/10.1038/nbt1092-1112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1092-1112

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing