Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Recovery of Soluble, Biologically Active Recombinant Proteins from Total Bacterial Lysates Using Ion Exchange Resin

Abstract

Eucaryotic proteins expressed intracellularly in Escherichia coli are frequently sequestered in insoluble inclusion bodies that must be solubilized prior to protein purification. Treatment of bacterial lysates with ion exchange resin has been found to solubilize 3 different recombinant proteins: an SV40 T antigen peptide Th encompassing the DNA binding do main of the intact protein, human interleukin 2, and the retroviral v-myb oncoprotein. The well-defined activities of peptide Th and interleukin were recovered in whole or in part in the solubilized proteins. This procedure may be generally applicable to the purification of insoluble recombinant proteins from E. coli or other expression systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marston, F.A.O. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240:1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ollo, R. and Maniatis, T. 1987. Drosphila Krüppel gene product produced in a baculovirus expression system is a nuclear phospho protein that binds to DNA. Proc. Natl. Acad. Sci. USA 84:5700–5704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Williams, D.C., Van Frank, R.M., Muth, W.L., and Burnett, J.P. 1982. Cytoplasmic inclusion bodies in Escherichia coli producing bio-synthetic human insulin proteins. Science 215:687–689.

    Article  CAS  PubMed  Google Scholar 

  4. Paul, D.c., Van Frank, R.M., Muth, W.L., Ross, J.C., and Williams, D.C. 1983. Immunocytochemical demonstration of human proinsulin chimeric polypeptide within cytoplasmic inclusion bodies of Escherichia coli. Eur. J. Cell Biol. 31:171–174.

    CAS  PubMed  Google Scholar 

  5. Lowe, P.A., Rhind, S.K., Sugrue, R., and Marston, F.A.O. 1987. Solubilisation, refolding and purification of eukaryotic proteins expressed in E. coli, p. 429–442. In: Protein Purification: Micro to Macro, R. Burgess, (Ed.). Alan R. Liss, Inc., New York.

    Google Scholar 

  6. Marston, F.A.O. 1987. The purification of eukaryotic polypeptides expressed in Escherichia coli, p. 59–88. In: DNA Cloning, Vol. III. D. Glover (Ed.). IRL Press, Oxford.

    Google Scholar 

  7. Arthur, A.K., Höss, A., and Fanning, E. 1988. Expression of simian virus 40 T antigen in Escherichia coli: Localization of T-antigen origin DNA-binding domain to within 129 amino acids. J. Virol. 62:1999–2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hartmann, G.R., Heinrich, P., Kollenda, M., Skrobranek, B., Trop-schug, M., and Weiβ, W. 1985. Molecular mechanism of action of the antibiotic rifampicin. Angew. Chemie 24:1009–1014.

    Article  Google Scholar 

  9. Gillis, S., Ferm, M., Ou, W., and Smith, K. 1978. T-cell growth factor: parameters of production and a quantitative microassay for activity. J. Immunol. 120:2027–2032.

    CAS  PubMed  Google Scholar 

  10. Messing, J., Crea, R., and Seeburg, P.H. 1981. A system for shotgun DNA sequencing. Nucleic Acids Res. 9:309–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boyer, H.W. and Roulland-Dussoix, R. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41:459–472.

    Article  CAS  PubMed  Google Scholar 

  12. Goff, S.A., Casson, L.P., and Goldberg, A.L. 1984. Heat shock regulatory gene htpR influences rates of protein degradation and expression of the lon gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 81:6647–6651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klempnauer, K.-H. and Sippel, A.E. 1987. The highly conserved amino terminal region of the protein encoded by the v-myb oncogene functions as a DNA binding domain. EMBO J. 6:2719–2725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harlow, E., Crawford, L.V., Pim, D.C., and Williamson, N.M. 1981. Monoclonal antibodies specific for simian virus 40 tumor antigens. J. Virol. 39:861–869.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kniep, B., Hünig, T.R., Fitch, F.W., Heuer, J., Kölsch, E., and Mühlradt, P. 1983. Neutral glycosphingolipids of murine myeloma cells and helper, cytolytic, and suppressor T-lymphocytes. Biochemistry 22:251–255.

    Article  CAS  PubMed  Google Scholar 

  16. Runzler, R., Thompson, S., and Fanning, E. 1987. Oligomerization and origin DNA-binding activity of simian virus 40 large T antigen. J. Virol. 61:2076–2083.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoess, A., Arthur, A., Wanner, G. et al. Recovery of Soluble, Biologically Active Recombinant Proteins from Total Bacterial Lysates Using Ion Exchange Resin. Nat Biotechnol 6, 1214–1217 (1988). https://doi.org/10.1038/nbt1088-1214

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1088-1214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing