Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Stabilization of Escherichia coli Tryptophan–Production Vectors in Continuous Cultures: A Comparison of Three Different Systems

Abstract

The valS-system for plasmid stabilization involves cloning the wild–type gene for valyl–tRNA synthetase (valS) in a plasmid which is transformed into a host strain carrying a temperature–sensitive mutation in its chromosomal valS–gene. At the non–permissive temperature cell growth is de pendent on the plasmid–encoded wild–type enzyme. Partition (par) loci from R1 or pSC101 plasmids did not stabilize plasmid inheritance. Although both par loci stabilized segregation somewhat, by 75–100 generations plasmids were lost from the majority of the cells. In contrast, in heritance of the plasmid was stabilized with the valS system for at least 150 generations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohen, S.N., Chang, A.C.Y., Boyer, H.W., and Helling, R.B. 1973. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. U.S.A. 70:3240–3244.

    Article  CAS  Google Scholar 

  2. Nugent, M.E., Primrose, S.B., and Tacon, W.C.A. 1983. The stability of recombinant DNA, p. 271–285. In: Developments in Industrial Microbiology. Vol. 24. Proceedings of the Thirty-Ninth General Meeting of the Society for Industrial Microbiology. Arlington, Virginia.

    Google Scholar 

  3. Rood, J.I., Sneddon, M.K., and Morrison, J.F. 1980. Instability in tyrR strains of plasmids carrying the tyrosine operon: isolation and characterization of plasmid derivatives with insertions or deletions. J. Bacteriol. 144:552–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsunekawa, H., Tateishi, M., Imanaka, T., and Aiba, S. 1981. TnA-directed deletion of the trp operon from RSF2124-trp in Escherichia coli. J. Gen. Microbiol. 127:93–102.

    CAS  PubMed  Google Scholar 

  5. Skogman, S.G., Nilsson, J., and Gustafsson, P. 1983. The use of a partition locus to increase stability of tryptophan-operon-bearing plasmids in Escherichia coli. Gene 23:105–115.

    Article  CAS  Google Scholar 

  6. Imanaka, T., Tsunekawa, H., and Aiba, S. 1980. Phenotypic stability of trp operon recombinant plasmids in Escherichia coli. J. Gen. Microbiol. 118:253–261.

    CAS  PubMed  Google Scholar 

  7. Miwa, K., Nakamori, S., Sano, K., and Momose, H. 1984. Stability of recombinant plasmids carrying the threonine operon in Escherichia coli. Agric. Biol. Chem. 48:2233–2237.

    CAS  Google Scholar 

  8. Rosteck Jr., P.R., and Hershberger, C.L. 1983. Selective retention of recombinant plasmids coding for human insulin. Gene 25:29–38.

    Article  CAS  Google Scholar 

  9. Meacock, P.A., and Cohen, S.N. 1980. Partitioning of bacterial plasmids during cell division: a cis-acting locus that acomplishes stable plasmid inheritance. Cell 20:529–542.

    Article  CAS  Google Scholar 

  10. Miki, T., Easton, A.M., and Rownd, R.H. 1980. Cloning of replication, incompatibility, and stability functions of R plasmid NR1. J. Bacteriol. 141:87–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nordström, K., Molin, S., and Aagaard-Hansen, H. 1980, Partitioning of plasmid R1 in Escherichia coli. I. Kinetics of loss of plasmid derivatives deleted of the par region. Plasmid 4:215–227.

    Article  Google Scholar 

  12. Ogura, T., and Hiraga, S. 1983. Partition mechanism of F plasmid: Two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell 32:351–360.

    Article  CAS  Google Scholar 

  13. Austin, S., and Abeles, A. 1983. The partition of unit-copy miniplasmids to daughter cells. I. P1 and F miniplasmids contain discrete, interchangeable sequences sufficient to promote equipartition. J. Mol. Biol. 169:353–372.

    Article  CAS  Google Scholar 

  14. Summers, D.K., and Sherratt, D.J. 1984. Multimerization of high copy number plasmids causes instability: Col E1 encodes a determinant essential for plasmid monomerization and stability. Cell 36:1097–1103.

    Article  CAS  Google Scholar 

  15. Skogman, S.G., and Nilsson, J. 1984. Temperature-dependent retention of a tryptophan-operon-bearing plasmid in Escherichia coli. Gene 31:117–122.

    Article  CAS  Google Scholar 

  16. Gerdes, K., Larsen, J.E.L., and Molin, S. 1985. Stable inheritance of plasmid R1 requires two different loci. J. Bacteriol. 161:292–298.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Primrose, S.B., Derbyshire, P., Jones, I.M., Robinson, A., and Ellwood, D.C. 1984. The application of continuous culture to the study of plasmid stability, p. 213–238. In: Continuous culture 8/: Biotechnol., Med. Environ. Dean, A. C. R. (ed.) London

    Google Scholar 

  18. Zurita, M., Bolivar, F., and Soberón, X. 1984. Construction and characterization of new cloning vehicles. VII. Construction of plasmid pBR327 par, a completely sequenced, stable derivative of pBR327 containing the par locus of pSC101. Gene 28:119–122.

    Article  CAS  Google Scholar 

  19. Melling, J., Ellwood, D.C., and Robinson, A. 1977. Survival of R-factor carrying Escherichia coli in mixed cultures in the chemostat. FEMS Microbiol. Letters 2:87–89.

    Article  Google Scholar 

  20. Wouters, J.T.M., and van Andel, J.G., 1983. Persistence of the R6 Plasmid in Escherichia coli grown in chemostat cultures. FEMS Microbiol. Lett. 16:169–174.

    Article  Google Scholar 

  21. Edlin, G., Tait, R.C., and Rodriguez, R.L. 1984. A bacteriophage λ cohesive ends (cos) DNA fragment enhances the fitness of plasmid-containing bacteria growing in energy-limited chemostats. Bio/Technology 2:251–254.

    CAS  Google Scholar 

  22. Ferrari, E., Henner, D.J., and Yang, M.Y. 1985. Isolation of an alanine racemase gene from Bacillus subtilis and its use for plasmid maintenance in B. subtilis. Bio/Technology 3:1003–1007.

    CAS  Google Scholar 

  23. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62:293–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Vogel, H.J., and Bonner, D.M. 1956. Acetylornithinase of Escherichia coli: Partial purification and some properties. J. Biol. Chem. 218:97–106.

    CAS  PubMed  Google Scholar 

  25. Engel-Valk, B.E., Heyneker, H.L., Oosterbaan, R.A., and Pouwels, P.H. 1980. Construction of new cloning vehicles with genes of the tryptophan operon of Escherichia coli as genetic markers. Gene 9:69–85.

    Article  Google Scholar 

  26. Tingle, M.A., and Neidhardt, F.C. 1969. Mapping of a structural gene for valyl-transfer ribonucleic acid synthetase in Escherichia coli by transduction. J. Bacteriol. 98:837–839.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ream, L.W., Margossian, L., Clark, A.J., Hanson, F.G., and von Meyerburg, K. 1980. Genetic and physical mapping of recF in Escherichia coli K-12. Molec. Gen. Genet. 180:115–121.

    Article  CAS  Google Scholar 

  28. Björk, G.R., and Olsén, A. 1979. A method for isolation of Escherichia coli mutants with aberrant RNA methylation using translocatable drug resistance elements. Acta Chem. Scand. B 33:591–593.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, J., Skogman, S. Stabilization of Escherichia coli Tryptophan–Production Vectors in Continuous Cultures: A Comparison of Three Different Systems. Nat Biotechnol 4, 901–903 (1986). https://doi.org/10.1038/nbt1086-901

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1086-901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing