Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineered bacterial orthogonal DNA replication system for continuous evolution

Abstract

Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and construction of BacORep.
Fig. 2: Developing a linear plasmid system by hijacking the DNA replication system of the temperate phage GIL16 in B. thuringiensis.
Fig. 3: Rational design and characterization of error-prone ODNAPs.
Fig. 4: Continuous evolution for obtaining generally applicable strong promoters in different bacteria and strains.
Fig. 5: Continuous evolution for obtaining efficient methanol-assimilating B. thuringiensis.

Similar content being viewed by others

Data availability

All data discussed in this study can be found in the Supplementary Information. The NGS raw data were deposited in the National Center of Biotechnology Information Sequence Read Archive (BioProject: PRJNA941059). Source data are provided with this paper.

References

  1. Arnold, F. H. Design by directed evolution. Acc. Chem. Res. 31, 125–131 (1998).

    Article  CAS  Google Scholar 

  2. Davis, A. M., Plowright, A. T. & Valeur, E. Directing evolution. The next revolution in drug discovery? Nat. Rev. Drug Discov. 16, 681–698 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Arnold, F. H. Directed evolution. Bringing new chemistry to life. Angew. Chem. 57, 4143–4148 (2018).

    Article  CAS  Google Scholar 

  5. Rix, G. & Liu, C. C. Systems for in vivo hypermutation. A quest for scale and depth in directed evolution. Curr. Opin. Chem. Biol. 64, 20–26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morrison, M. S., Podracky, C. J. & Liu, D. R. The developing toolkit of continuous directed evolution. Nat. Chem. Biol. 16, 610–619 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Meyer, A. J. & Ellington, A. D. Molecular evolution picks up the PACE. Nat. Biotechnol. 29, 502–503 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Simon, A. J., d’Oelsnitz, S. & Ellington, A. D. Synthetic evolution. Nat. Biotechnol. 37, 730–743 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, H. et al. Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nat. Biotechnol. 38, 165–168 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Cravens, A., Jamil, O. K., Kong, D., Sockolosky, J. T. & Smolke, C. D. Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering. Nat. Commun. 12, 1579 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hao, W. et al. Development of a base editor for protein evolution via in situ mutation in vivo. Nucleic Acids Res. 49, 9594–9605 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schubert, M. G. et al. High-throughput functional variant screens via in vivo production of single-stranded DNA. Proc. Natl Acad. Sci. USA 118, e2018181118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jensen, E. D. et al. A synthetic RNA-mediated evolution system in yeast. Nucleic Acids Res. 49, e88 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crook, N. et al. In vivo continuous evolution of genes and pathways in yeast. Nat. Commun. 7, 13051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Yi, X., Khey, J., Kazlauskas, R. J. & Travisano, M. Plasmid hypermutation using a targeted artificial DNA replisome. Sci. Adv. 7, eabg8712 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blum, T. R. et al. Phage-assisted evolution of botulinum neurotoxin proteases with reprogrammed specificity. Science 371, 803–810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ravikumar, A., Arzumanyan, G. A., Obadi, M. K., Javanpour, A. A. & Liu, C. C. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell 175, 1946–1957 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhong, Z. & Liu, C. C. Probing pathways of adaptation with continuous evolution. Curr. Opin. Syst. Biol. 14, 18–24 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ravikumar, A., Arrieta, A. & Liu, C. C. An orthogonal DNA replication system in yeast. Nat. Chem. Biol. 10, 175–177 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Wellner, A. et al. Rapid generation of potent antibodies by autonomous hypermutation in yeast. Nat. Chem. Biol. 17, 1057–1064 (2021).

  24. Javanpour, A. A. & Liu, C. C. Evolving small-molecule biosensors with improved performance and reprogrammed ligand preference using OrthoRep. ACS Synth. Biol. 10, 2705–2714 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rix, G. et al. Scalable continuous evolution for the generation of diverse enzyme variants encompassing promiscuous activities. Nat. Commun. 11, 5644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Muñoz-Espín, D., Holguera, I., Ballesteros-Plaza, D., Carballido-López, R. & Salas, M. Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid. Proc. Natl Acad. Sci. USA 107, 16548–16553 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Nies, P. et al. Self-replication of DNA by its encoded proteins in liposome-based synthetic cells. Nat. Commun. 9, 1583 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gillis, A. & Mahillon, J. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Past, present and future. Viruses 6, 2623–2672 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Meijer, W. J., Horcajadas, J. A. & Salas, M. Phi29 family of phages. Microbiol. Mol. Biol. Rev. 65, 261–287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gillis, A. & Mahillon, J. Influence of lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility. Appl. Environ. Microbiol. 80, 7620–7630 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Biggel, M. et al. Whole genome sequencing reveals biopesticidal origin of Bacillus thuringiensis in foods. Front. Microbiol. 12, 775669 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Verheust, C., Fornelos, N. & Mahillon, J. GIL16, a new gram-positive tectiviral phage related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 elements. J. Bacteriol. 187, 1966–1973 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wannier, T. M. et al. Improved bacterial recombineering by parallelized protein discovery. Proc. Natl Acad. Sci. USA 117, 13689–13698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu, Y. et al. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Res. 48, 996–1009 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Soengas, M. S. et al. Site-directed mutagenesis at the Exo III motif of phi 29 DNA polymerase; overlapping structural domains for the 3′–5′ exonuclease and strand-displacement activities. EMBO J. 11, 4227–4237 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vega, M., de, Lazaro, J. M., Salas, M. & Blanco, L. Primer-terminus stabilization at the 3′–5′ exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases. EMBO J. 15, 1182–1192 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Truniger, V., Lázaro, J. M., Salas, M. & Blanco, L. A DNA binding motif coordinating synthesis and degradation in proofreading DNA polymerases. EMBO J. 15, 3430–3441 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vega, M., de, Lázaro, J. M. & Salas, M. Phage ø29 DNA polymerase residues involved in the proper stabilisation of the primer-terminus at the 3′–5′ exonuclease active site. J. Mol. Biol. 304, 1–9 (2000).

    Article  PubMed  Google Scholar 

  40. Pérez-Arnaiz, P., Lázaro, J. M., Salas, M. & de Vega, M. Functional importance of bacteriophage ϕ29 DNA polymerase residue tyr148 in primer-terminus stabilisation at the 3'-5' exonuclease active site. J. Mol. Biol. 391, 797–807 (2009).

    Article  PubMed  Google Scholar 

  41. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, Y., Liu, L., Li, J., Du, G. & Chen, J. Synthetic biology toolbox and chassis development in Bacillus subtilis. Trends Biotechnol. 37, 548–562 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Lu, Z. et al. CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis. Nucleic Acids Res. 47, e40 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tian, R. et al. Titrating bacterial growth and chemical biosynthesis for efficient N-acetylglucosamine and N-acetylneuraminic acid bioproduction. Nat. Commun. 11, 5078 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 373, 1523–1527 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Gao, B. et al. Constructing a methanol-dependent Bacillus subtilis by engineering the methanol metabolism. J. Biotechnol. 343, 128–137 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Li, C., Zou, Y., Jiang, T., Zhang, J. & Yan, Y. Harnessing plasmid replication mechanism to enable dynamic control of gene copy in bacteria. Metab. Eng. 70, 67–78 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fornelos, N., Bamford, J. K. H. & Mahillon, J. Phage-borne factors and host LexA regulate the lytic switch in phage GIL01. J. Bacteriol. 193, 6008–6019 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fornelos, N. et al. Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue. Nucleic Acids Res. 46, 9432–9443 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fornelos, N. et al. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage. Nucleic Acids Res. 43, 7315–7329 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. del Solar, G., Giraldo, R., Ruiz-Echevarría, M. J., Espinosa, M. & Díaz-Orejas, R. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62, 434–464 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Espah Borujeni, A. et al. Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences. Nucleic Acids Res. 45, 5437–5448 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Majidian, P. et al. Bacillus subtilis GntR regulation modified to devise artificial transient induction systems. J. Gen. Appl. Microbiol. 62, 277–285 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Brantl, S. Antisense-RNA mediated control of plasmid replication—pIP501 revisited. Plasmid 78, 4–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, Y. et al. Synthetic promoter design in Escherichia coli based on a deep generative network. Nucleic Acids Res. 48, 6403–6412 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang, H. et al. Efficient extracellular production of recombinant proteins in E. coli via enhancing expression of dacA on the genome. J. Ind. Microbiol. Biotechnol. 49, kuac016 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Snapyan, M. et al. Cell-free protein synthesis by diversifying bacterial transcription machinery. BioTech 10, 24 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, Y. et al. Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res. 40, e91 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mencía, M., Gella, P., Camacho, A., de Vega, M. & Salas, M. Terminal protein-primed amplification of heterologous DNA with a minimal replication system based on phage ϕ29. Proc. Natl Acad. Sci. USA 108, 18655–18660 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. González-Huici, V., Alcorlo, M., Salas, M. & Hermoso, J. M. Phage φ29 proteins p1 and p17 are required for efficient binding of architectural protein p6 to viral DNA in vivo. J. Bacteriol. 186, 8401–8406 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Serna-Rico, A., Muñoz-Espín, D., Villar, L., Salas, M. & Meijer, W. J. J. The integral membrane protein p16.7 organizes in vivo φ29 DNA replication through interaction with both the terminal protein and ssDNA. EMBO J. 22, 2297–2306 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Verheust, C., Jensen, G. & Mahillon, J. pGIL01, a linear tectiviral plasmid prophage originating from Bacillus thuringiensis serovar israelensis. Microbiology 149, 2083–2092 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Peng, D. et al. Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis. J. Appl. Microbiol. 106, 1849–1858 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. He, J. et al. Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. J. Bacteriol. 192, 4074–4075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Filsinger, G. T. et al. Characterizing the portability of phage-encoded homologous recombination proteins. Nat. Chem. Biol. 17, 394–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Butala, M., Žgur-Bertok, D. & Busby, S. J. W. The bacterial LexA transcriptional repressor. Cell. Mol. Life Sci. 66, 82–93 (2008).

    Article  Google Scholar 

  68. Fabret, C., Dusko Ehrlich, S. & Noirot, P. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol. Microbiol. 46, 25–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Chang, S. & Cohen, S. N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol. Gen. Genet. 168, 111–115 (1979).

    Article  CAS  PubMed  Google Scholar 

  70. Foster, P. L. Methods for determining spontaneous mutation rates. Methods Enzymol. 409, 195–213 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hall, B. M., Ma, C.-X., Liang, P. & Singh, K. K. Fluctuation analysis calculator. A web tool for the determination of mutation rate using Luria–Delbrück fluctuation analysis. Bioinformatics 25, 1564–1565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl Acad. Sci. USA 102, 12678–12683 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tian, R. et al. Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Metab. Eng. 55, 131–141 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Tjaden, B. A computational system for identifying operons based on RNA-seq data. Methods 176, 62–70 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, Y. et al. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat. Commun. 11, 3120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Badran, A. H. & Liu, D. R. Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat. Commun. 6, 8425 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Sun from Huazhong Agricultural University for providing us with strain B. thuringiensis HD-1 and B. thuringiensis BMB171. We are also grateful to L. Ma from Jiangsu Academy of Agricultural Sciences for providing us with strain B. thuringiensis JW-1. We also thank W. Chu from the Science Center for Future Foods, Jiangnan University, for preparing all the NGS samples. In addition, we thank L. Zhang from the School of Biotechnology, Jiangnan University, for doing all the flow cytometry. This study is financially supported by the National Key Research and Development Program of China (2018YFA0900300), the National Science Fund for Excellent Young Scholars (32222069), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (32021005), the National Natural Science Foundation of China (32172349), the Natural Science Foundation of Jiangsu Province (BK20202002 and BK20200085) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_1824).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and R.T. designed the experiments. R.T., R.Z., K.Y., H.G. and C.W. performed the biochemical experiments and analyzed the data. R.T. and C.L. performed protein structure modeling and analysis. Y.L., X.L., J.L., L.L., G.D. and J.C. conceived the project and supervised the research. R.T., Y.L., X.L., J.L., L.L., G.D. and J.C. wrote the paper.

Corresponding author

Correspondence to Yanfeng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Mattheos Koffas, Jumi Shin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The first two approaches to construct linear plasmids based on lytic phage and temperate phage in B. subtilis.

(a) Linear plasmid system construction using lytic phage φ29 replication system. During the phage φ29 lytic cycle, phage φ29 first injects its linear double-stranded DNA (dsDNA) genome into the cell. Then, it replicates the phage genome and synthesizes phage capsid and tail proteins. In addition, cells are lysed, and progeny phages are released after packaging into progeny phage particles. Developing linear plasmids in B. subtilis was tested by expressing linear dsDNA replication machinery proteins and rationally designing linear plasmids. TP, terminal proteins. DNAP, DNA polymerase. (b) Transferring the dormant state phage to B. subtilis by protoplast fusion of B. thuringiensis-harboring temperate phage GIL01 and B. subtilis. Linear plasmid system construction using temperate phage GIL01 replication system. B. thuringiensis temperate phage GIL01/GIL16 are capable of persistent intracellular dormancy unless DNA damage occurs. Therefore, it potentially can be used as a linear plasmid in B. subtilis.

Extended Data Fig. 2 Linear plasmid construction workflow based on phage φ29 DNA replication system.

(a) Genome map of lytic phage φ29. The genome is mainly composed of two early operons on both sides (mainly expressed in the early stage of phage infection) and a late operon in the middle (mainly expressed in the late stage of phage infection). A2b, A2c and C2 are promoters of corresponding operons. TP, terminal proteins. DNAP, DNA polymerase. (b) Map of designed linear plasmid (LP). cm, chloromycetin resistance gene. gfp, green fluorescent protein gene. MoriL, minimally replicated region on the left (191 bp). MoriR, minimally replicated region on the right (MoriR, 194 bp). GOI, gene of interest. 5’-phosphate modification of linear dsDNA is one of the necessary conditions for TP to covalently bind to it. (c) Electroporation protocol optimization. Data are the mean ± SD from four (n = 4) biologically independent replicates. (d) Replication machinery expression optimization. 18 promoters with gradient strength were selected, and 36 new strains expressing the φ29 replication machinery via plasmid expression and genome-integrated expression were constructed, respectively. Expression levels of 18 promoters were characterized using GFP. (e) Orthogonal DNAP strict expression regulation. Expression of φ29 DNAP using the tightly self-regulated promoter P-PIP501 and 5 RBSs. Expression levels of strong promoter P224 and promoter P-PIP501 were characterized using GFP. For d and e, data are the mean ± SD from five (n = 5) biologically independent replicates. (f) Right early operon expression. Expression of the right early operon using a gluconic acid-inducible promoter. Expression levels of genes under different gluconic acid concentrations were characterized using GFP. Data are the mean ± SD from four (n = 4) biologically independent replicates.

Source data

Extended Data Fig. 3 Lysogenic control mechanism verification and linear plasmid construction based on temperate phage GIL01 replication system.

(a) Genome map and lysogenic control mechanism of temperate phage GIL01/GIL16. The genome of phage GIL01/GIL16 consists of two operons with clear functions. Phage GIL01 leads to turbid plaques typical of temperate phages. The complex of gp7 with bacterial SOS transcription factor LexA achieves tight control of GIL01 gene expression. P1P2 and P3 are dinBox-containing promoters. (b) The theoretical functional mechanism of the GIL01 lysogeny control system in B. subtilis. When mitomycin C (MMC) is not added, the complex composed of LexA and gp7 binds to the promoter containing the dinBox sequence and inhibits its expression; when MMC is added, the ssDNA generated by genomic DNA damage activates RecA, which further enables LexA to undergo self-cleavage thereby releasing repression of the promoter. (c) Colony images when transforming different plasmids. (d) dinBox sequences of three promoters. (e) Design for inducible expression of gp1 and gp7. gp1 and gp7 were expressed under the control of IPTG-inducible promoter PgraC. (f) GFP expression levels under the control of three dinBox-containing promoters. All the data are expressed as the mean ± SD from three (n = 3) biologically independent replicates. (g) Design of the protoplast fusion process. Kmr, kanamycin resistance gene expression cassette, Spcr, spectinomycin resistance gene expression cassette. Successfully fused strains are capable of growing on plates supplemented with both kanamycin (Km) and spectinomycin (Spc). Scale bar, 2 μm.

Source data

Extended Data Fig. 4 Characterizing the growth rates of B. thuringiensis and optimizing the electroporation protocol for B. thuringiensis HD-1.

(a) Growth curves and maximum specific growth rates (µ) of different strains at 30 °C and 37 °C, respectively. Strains include B. thuringiensis JW-1 containing lysogenic prophage GIL01, B. thuringiensis HD-1 containing lysogenic prophage GIL16, B. thuringiensis mutant strain BMB171, gram-negative model bacterium E. coli, and gram-positive model bacterium B. subtilis. Data are the mean ± SD from six biologically independent replicates. (b) Electroporation protocol optimization. Data are the mean ± SD from four biologically independent replicates (c) Tolerance concentration of B. thuringiensis HD-1 to different antibiotics.

Source data

Extended Data Fig. 5 Optimization of linear plasmid editing protocols.

(a) Illustration of linear plasmid editing. (b) Linear plasmid editing efficiency when additionally expressing different DNA annealing-assistance proteins. Exo, 5′ to 3′ double-stranded DNA exonuclease in the λ-Red system. CspRecT, Collinsella stercoris phage single-stranded DNA-annealing proteins. EcoSSB, E. coli single-stranded DNA-binding protein. BtComK, B. thuringiensis ComK protein. BsComK, B. subtilis ComK protein. (c) Illustration of linear plasmid structure. spc, spectinomycin resistance gene. em, erythromycin resistance gene. TP, terminal protein. (d) Validation of successfully edited linear plasmids by PCR. Three times experiments were repeated independently with similar results.

Source data

Extended Data Fig. 6 Develop a CRISPRi repression tool to demonstrate the orthogonality of GIL16 DNAP and linear plasmids.

(a) CRISPRi repression tool design and test. Data are expressed as the mean ± SD from six (n = 6) biologically independent replicates. (b) sgRNA design to repress the expression of the entire linear plasmid (LP) replication and regulation gene cluster or the expression of GIL16 DNAP. (c) Using CRISPRi repression tool to demonstrate the orthogonality of the GIL16 DNAP and the LP. (d) Measurement of cell growth curve. Data are expressed as the mean ± SD from three (n = 3) biologically independent replicates.

Source data

Extended Data Fig. 7 Rational search for target mutation sites through sequence alignment.

Functional domains common to B-family DNAPs are shown above. All red and yellow shaded areas indicate regions that have been reported to affect φ29 DNAP fidelity. For example, mutations corresponding to the error-prone synthetic DNA of φ29 DNAP (shown in grey) through sequence alignment and homology analysis were found in GIL16 DNAP (shown in green).

Extended Data Fig. 8 Sequences of promoter variants obtained by continuous evolution.

Red letters represent known functional sequences. Blue represents mutations. Black lines represent sequence insertions. ‘(xxx)n’ represents the number of sequence repeats.

Extended Data Fig. 9 Compare PM4 to other reported strong promoters in three E. coli strains.

To test the universality of the PM4 promoter among different E. coli strains, it was compared with several strong E. coli promoters selected from recent publications. All promoters were tested under the same conditions, including the same plasmid vector (pUC plasmid) and the same RBS. E. coli strains including E. coli MG1655, E. coli BL21, and E. coli Nissle1917. Data are the mean ± SD from six (n = 6) biologically independent replicates.

Source data

Supplementary information

Supplementary Information

Supplementary Fig. 1, Tables 1–6, References and Note

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data and an unprocessed gel.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, R., Zhao, R., Guo, H. et al. Engineered bacterial orthogonal DNA replication system for continuous evolution. Nat Chem Biol 19, 1504–1512 (2023). https://doi.org/10.1038/s41589-023-01387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01387-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research