Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Automated DNA Sequencing: Progress and Prospects

Abstract

In the decade since their inception, manual DNA sequencing techniques have made only minor inroads into the primary biological data–base. Attempts have been made to automate the process in order to achieve an enhanced rate of data–capture to allow access to the larger genome. Progress in instrumenting these techniques has been restricted because of their complexity and the multidisciplinary nature of the procedures involved. This article outlines the manual methods presently employed and reviews current sequencing methodology. A rationale for the possible successful automation of DNA sequencing incorporating a potential for improvements in related areas is presented. Recent sequence instrumentation projects are assessed and an account is provided of contemporary national and international proposals to implement accelerated DNA sequence data–capture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maxam, A.M. and Gilbert, W. 1977. A new method for sequencing DNA. Proc. Nat. Acad. Sci. USA 74:560–564.

    Article  CAS  Google Scholar 

  2. Maxam, A.M. and Gilbert, W. 1980. Sequencing end-labelled DNA with base-specific chemical cleavage. Methods Enzymol. 65:499–560.

    Article  CAS  Google Scholar 

  3. Sanger, F., Niklen, S., and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci USA 74:5463–5467.

    Article  CAS  Google Scholar 

  4. Baer, R., Bankier, A.T., Biggin, M.D., Deringer, P.L., et al. 1984. DNA sequence and the expression of the B95-8 Epstein-Barr virus genome. Nature 310:207–211.

    Article  CAS  Google Scholar 

  5. Bilofsky, H.S. et al. 1986. The GenBank genetic sequence databank. Nucl. Acids Res. 14:1–4.

  6. Hamm, G.H. and Cameron, G.N. 1986. The EMBL data library. Nucl. Acids Res. 14:5–9.

    Article  CAS  Google Scholar 

  7. EMBL. 1986. Nucleotide Sequence Data Library. Release No. 8.

  8. Wada, A., Yamamoto, M., and Soeda, E. 1983. Automatic DNA sequencer: a computer-programmed microchemical manipulator for the Maxam-Gilbert sequencing method. Rev. Sc. Instrum. 54:1569–1572.

    Article  CAS  Google Scholar 

  9. Smith, L.M., Hunkapiller, W., Hunkapiller, T.J., and Hood, L.E. 1985. The synthesis of oligonucleotides containing an aliphatic amino group at the 5′terminus; synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucl. Acids. Res. 13:2399–2412.

    Article  CAS  Google Scholar 

  10. Martin, W.J., Warmington, J.R., Galinski, B.R., Gallagher, M., Davies, R.W., Beck, M.S., and Oliver, S.G. 1985. Automation of DNA sequencing: A system to perform the Sanger dideoxysequencing reactions. Bio/Technology 3:911–915.

    Article  CAS  Google Scholar 

  11. Martin, W.J., Galinski, B.R., and Beck, M.S. 1986. Automatic manipulation of microlitre volumes of liquid reagents. J. Phys. E. in press.

  12. Beck, S. and Pohl, F.M. 1984. DNA sequencing with direct blotting electrophoresis. EMBO J. 3:2905–2909.

    Article  CAS  Google Scholar 

  13. Garoff, H. and Ansorge, W. 1981. Improvements of DNA sequencing gels. Anal. Biochem. 115:450–457.

    Article  CAS  Google Scholar 

  14. Ansorge, W. and Labeit, S. 1984. Field gradients improve resolution on DNA sequencing gels. J. Biochem. Biophys. Met. 10:237–243.

    Article  CAS  Google Scholar 

  15. Olsson, A., Moks, T., Uhlen, M., and Gaal, A.B. 1984. Uniformly spaced banding pattern in DNA sequencing gels by use of field-strength gradient. J. Biochem. Biophys. Met. 10:83–91.

    Article  CAS  Google Scholar 

  16. Akademie der Wissenschaften der DDR, 1985. Solid-state sequencing of nucleic acid fragments. DD 228906 Al.

  17. Mitsui Toatsu Chemicals Inc. 1985. Process and apparatus for scission treatment of deoxyribonucleic acids. GB 2146339 A (Appl.)

  18. Hitachi Ltd., Apparatus for nucleic acid sequence determination (electrophoresis). JP 61/3042 A2, JP 61/3041 A2, JP 61/3044 A2.

  19. Hitachi Ltd., Apparatus for nucleic acid sequence determination (imaging). JP 61/3043 A2, JP 60/242368 A2, JP 60/161559 A2, JP 59/ 228156 A2.

  20. Fuji Photo Film Co., Apparatus and element for electrophoresis. EP 157280 A2 (Appl.), EP 126639 A2 (Appl.), EP 119808 A2 (Appl.).

  21. Fuji Photo Film Co., Imaging for DNA sequencing. EP 160948 A2 (Appl.), EP 141382 A2 (Appl.), JP 59/126251 A2, JP 59/126252 A2, JP 59/126254 A2, JP 59/126255 A2, JP 59/126256 A2, JP 59/126257 A2, JP 59/126246/47/48/50/49 and JP 59/83058 A2.

  22. Wada, A. 1984. Automatic DNA Sequencing. Nature 307:193.

    Article  Google Scholar 

  23. Wada, A. (personal communication).

  24. Bankier, A.T. 1984. Advances in dideoxy sequencing. BioTechniques 2:72–77.

    CAS  Google Scholar 

  25. Board of Regents of the University of Nebraska. 1984. DNA sequencing. US 594676 (Appl.). and EP 85103155.9 A2 (Appl. 1985).

  26. Ornstein, D.L. and Kashdan, M.A. 1985. Sequencing DNA using 35S-labeling: a troubleshooting guide. BioTechniques. 3:478–483.

    Google Scholar 

  27. Williams, S.A., Slatko, B.E., Moran, L.S., and De Simone, S.M. 1986. Sequencing in the fast lane: a rapid protocol for [α-35S]dATP dideoxy DNA sequencing. Bio Techniques 4:139–147.

    Google Scholar 

  28. Bateman, J.E., Connolly, J.F., and Stephenson, R. 1985. High speed quantitative digital beta autoradiography using a multi-step avalanche detector and an Apple II microcomputer. Nucl. Instr. and Meth. A241:275–289.

    Article  CAS  Google Scholar 

  29. Biggin, M.D., Gibson, T.J., and Hong, G.F. 1980. Buffer gradient gels and 35S-label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80:3963–3965.

    Article  Google Scholar 

  30. Rosenthal, A., Schwertner, S., Hahn, V., and Hunger, H.D. 1985. Solid-phase methods for sequencing of nucleic acids. Simultaneous sequencing of different oligodeoxyribonucleotides using a new, mechanically stable anion-exchange paper. Nucl. Acid. Res. 13:1173–1184.

    Article  CAS  Google Scholar 

  31. Chuvpilo, S.A. and Kravchenko, V.V. 1985. A simple and rapid method for sequencing DNA. FEBS Lets. 179:34–36.

    Article  CAS  Google Scholar 

  32. Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359.

    Article  CAS  Google Scholar 

  33. Dale, R., McClure, B., and Mouchins, J. 1985. A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18S rDNA. Plasmid 13:31–40.

    Article  CAS  Google Scholar 

  34. Sibley, S. (personal communication).

  35. Nucl. Acid Res. 1986. 14, No. 1:1–621.

  36. Nucl. Acid Res. 1982. 10, No. 1:1–773.

  37. Charpak, G., Melchart, G., Petersen, G., and Sauli, F. 1981. The multistcp chamber as a high-accuracy localisation device for beta chromatography and slow neutron imaging. IEEE Trans. Nuc. Sc., Vol. NS-28, No. 1.

  38. Pullan, B.R. 1982. Apparatus for detecting and determining the distribution of radioactivity on a medium. EP 0 112 645 (Appl.).

  39. Smith, I., 1985. The AMBIS Beta Scanning System. BioEssays 3:225–229.

    Article  CAS  Google Scholar 

  40. Elder, J.K., Green, D.K., and Southern, E.M. 1986. Automatic reading of DNA sequencing gel autoradiographs using a large format digital scanner. Nucl. Acids. Res. 14:417–424.

    Article  CAS  Google Scholar 

  41. California Institute of Technology. 1985. Electrophoretic analysis of DNA fragments. DE 3501306 Al.

  42. Hitachi, Ltd. 1983. Determination of molecular structure of DNA. JP 58/87452 A2.

  43. Neri, N., Sindona, G., and Uccella, N. 1983. Bioorganic applications of Mass spectrometry. II. Gazz. Chim. Ital. 113:197–202.

    CAS  Google Scholar 

  44. Panico, M., Sindona, G., and Uccella, N. 1983. Biorganic applications of mass spectrometry. 3. J. Am. Chem. Soc. 105:5607–5610.

    Article  CAS  Google Scholar 

  45. Grotjahn, L., Frank, R., and Bloecker, H. 1983. Sequencing of oligodeoxyribonucleotides by negative FAB-MS. Int. J. Mass Spectrom. Ion Phys. 46:439–442.

    Article  CAS  Google Scholar 

  46. Jankowski, K. and Soler, F. 1984. Sequencing polynucleotides via FAB mass spectrometry: a half-sequence method (Part X). J. Bioelectr. 3:299–304.

    Article  CAS  Google Scholar 

  47. Grotjahn, L., Bloecker, H., and Frank, R. 1985. Mass spectroscopic sequence analysis of oligonucleotides. Biomed. Mass Spectrom. 12:514–524

    Article  CAS  Google Scholar 

  48. Domilovskii, E.R. 1984. A possible physical method for determining the sequence of bases in nucleic acids. Sov. Phys. Dokl. USA 29:216–217.

    Google Scholar 

  49. Kelly, J.M., Murphy, M.J., McConnell, D.J., and O Hégan, C. 1985. A comparative study of the interaction of 5, 10, 15, 20-tetrakis(N-methylpyridinium-4-yl)porphyrin and its zinc complex with DNA using fluorescence spectroscopy and topoisomerisation. Nucl. Acids. Res. 13:167–184.

    Article  CAS  Google Scholar 

  50. Kelly, J.M., Tossi, A.B., McConnell, D.J., and O Hégan, C. 1985. A study of the interactions of some polypridyluthenium(II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucl. Acids. Res. 13:6017–6034.

    Article  CAS  Google Scholar 

  51. Kunkel, T.A. 1985. Rapid and efficient site-specific mutagenesis without phenotype selection. Proc. Natl. Acad. Sci. USA 82:488–492.

    Article  CAS  Google Scholar 

  52. Dulbecco, R. 1986. A turning point in cancer research: Sequencing the human genome. Science 231:1055–1056.

    Article  CAS  Google Scholar 

  53. Smith, L.M., Sanders, J.Z., Kaiser, R.J., Hughes, P., Dodd, C., Connelly, C.R., Heiner, C., Kent, S.B.H., and Hood, L.E. 1986. Fluorescence detection in automated DNA sequence analysis. Nature 321:674–678.

    Article  CAS  Google Scholar 

Download references

Author information

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, W., Davies, R. Automated DNA Sequencing: Progress and Prospects. Nat Biotechnol 4, 890–895 (1986). https://doi.org/10.1038/nbt1086-890

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1086-890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing