Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The chemistry of next-generation sequencing

Abstract

The first large genome fully sequenced by next-generation sequencing (NGS) was that of a bacteriophage using sequencing by synthesis (SBS) as a paradigm. SBS in NGS is underpinned by ‘reversible-terminator chemistry’. To grow from proof of concept to being both affordable and practical, SBS needed to overcome a series of challenges, each of which required the invention of new chemistries. These included the design and synthesis of unnatural deoxynucleotide triphosphates (dNTPs), engineering a suitable polymerase, a new surface chemistry and an ingenious molecular solution to neutralize copying errors inherent to all polymerases. In this historical Perspective, we discuss how NGS was developed from Sanger sequencing, highlighting the chemistry behind this technology, which has impacted biology in unprecedented ways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of Sanger sequencing.
Fig. 2: Scheme of reversible-terminator chemistry.
Fig. 3: Schematic illustration of the active site within DNA polymerase.
Fig. 4: Schematic of the NGS workflow (part 1).
Fig. 5: Schematic of the NGS workflow (part 2).

Similar content being viewed by others

References

  1. Sanger, F., Nicklen, F. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tsien, R. Y., Ross, P., Fahnestock, M. & Johnston, A. DNA sequencing. Patent WO9106678A1 (1990).

  3. Ronaghi, M., Uhlén, M. & Nyrén, P. A sequencing method based on real-time pyrophosphate. Science 281, 363–365 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. International Human Genome Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  Google Scholar 

  5. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, G. D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Gupta, N. & Verma, V. K. Next-generation sequencing and its application: empowering in public health beyond reality. In Microbial Technology for the Welfare of Society: Microorganisms for Sustainability (ed. Arora, P.) Vol. 17 (Springer, 2019).

  9. Willson, J. Sequencing — the next generation. Nature Milestones S7 (2021).

  10. Burgess, D. The dawn of personal genomes. Nature Milestones S9 (2021).

  11. Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456, 60–66 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furey, W. S. et al. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Biochemistry 37, 2979–2990 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Canard, B. & Sarfati, R. S. DNA polymerase fluorescent substrates with reversible 3′-tags. Gene 148, 1–6 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Welch, M. B. et al. Syntheses of nucleosides designed for combinatorial DNA sequencing. Chem. Eur. J. 5, 951–960 (1999).

    Article  CAS  Google Scholar 

  16. Metzker, M. L. et al. Termination of DNA synthesis by novel 3′-modified deoxyribonucleoside 5′-triphosphates. Nucleic Acids Res. 22, 4259–4267 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turcatti, G., Romieu, A., Fedurco, M. & Tairi, A.-P. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. Nucleic Acids Res. 36, e25 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Staudinger, H. & Meyer, J. Über neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helv. Chim. Acta 2, 635 (1919).

    Article  CAS  Google Scholar 

  19. Balasubramanian, S. Sequencing nucleic acids: from chemistry to medicine. Chem. Commun. 47, 7281–7286 (2011).

    Article  CAS  Google Scholar 

  20. Barnes, C., Balasubramanian, S., Liu, X., Swerdlow, H. & Milton, J. Labelled nucleotides. US patent 7,057,026 B2 (2002).

  21. Sarfati, S. R. et al. Synthesis of fluorescent or biotinylated nucleoside compounds. Tetrahedron 43, 3491–3497 (1987).

    Article  CAS  Google Scholar 

  22. Rosenblum, B. B. et al. New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Res. 25, 4500–4504 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kiefer, J. R., Mao, C., Braman, J. C. & Beese, L. S. Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391, 304–307 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, G. P., Bailey, D. M. D., Sanches, R. M., Swerdlow, H. & Earnshaw, D. J. Modified polymerases for improved incorporation of nucleotide analogues. Patent WO 2005/024010 A1 (2003).

  25. Ost, T. W. B., Smith, G. P., Balasubramanian, S., Rigatti, R. & Sanches, R. M. Improved polymerases. Patent WO 2006/120433 A1 (2006).

  26. Smith, G. P., Bailey, D. M. D., Sanches-Kuiper, R. M., Swerdlow, H. & Earnshaw, D. J. Modified polymerases for improved incorporation of nucleotide analogues. US patent 8,852,910 B2 (2003).

  27. Smith, M. et al. Modified molecular arrays. Patent WO 2005/065814 A1 (2005).

  28. Kawashima, E., Farinelli, L. & Mayer, P. Method of nucleic acid amplification by extension of immobilized primers. Patent WO 9844151 (1998).

  29. Mayer, P. Isothermal amplification of nucleic acids on a solid support. Patent WO 02/46456 (2001).

  30. Robinson, R. A synthesis of tropinone. J. Chem. Soc. 111, 762–768 (1917).

  31. Rodriguez, A. R. et al. Total synthesis of cyercene A and the biomimetic synthesis of (±)-9,10-deoxytridachione and (±)-ocellapyrone. Tetrahedron 63, 4500–4509 (2007).

    Article  CAS  Google Scholar 

  32. Wuts, P. G. M. & Greene, T. W. Greene’s Protective Groups in Organic Synthesis 4th edn (John Wiley & Sons, 2006).

  33. Baran, P. S., Maimone, T. J. & Richter, J. M. Total synthesis of marine natural products without using protecting groups. Nature 446, 404–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Koboldt, D. C., Meltz Steinberg, K., Larson, D. E., Wilson, R. K. & Mardis, E. R. The next-generation sequencing revolution and its impact on genomics. Cell 155, 27–38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rodriguez, R. et al. Small molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8, 301–310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodriguez, R. & Miller, K. M. Unravelling the genomic targets of small molecules using high-throughput sequencing. Nat. Rev. Genet. 15, 783–796 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  PubMed  Google Scholar 

  40. Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 346–353 (2017).

    Article  Google Scholar 

  41. Newby, G. A. et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295–302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Veetil, A. T. & Krishnan, Y. In Advanced Chemical Biology (eds Hang, H. C., Pratt, M. R. & Prescher, J. A.) Ch. 2, pp 9–30 (Wiley-VCH, 2023).

Download references

Acknowledgements

We thank all those whose intellectual and practical contributions have collectively enabled the development of NGS. The intellectual property underlying NGS is protected by a series of patents not discussed in this article. We thank J. Szostak, V. Ramakrishnan and J.-M. Lehn for fruitful discussions and our colleagues at the University of Chicago and the Institut Curie for their constructive comments. R.R. was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 647973), Foundation Charles Defforey-Institut de France and Ligue Contre le Cancer. Y.K. is supported by NIH grant 1DP1GM149751-01 and the Ono Pharma Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.R. and Y.K. contributed equally to this work.

Corresponding authors

Correspondence to Raphaël Rodriguez or Yamuna Krishnan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, R., Krishnan, Y. The chemistry of next-generation sequencing. Nat Biotechnol 41, 1709–1715 (2023). https://doi.org/10.1038/s41587-023-01986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-023-01986-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing