Perspective | Published:

Looking and listening to light: the evolution of whole-body photonic imaging

Abstract

Optical imaging of live animals has grown into an important tool in biomedical research as advances in photonic technology and reporter strategies have led to widespread exploration of biological processes in vivo. Although much attention has been paid to microscopy, macroscopic imaging has allowed small-animal imaging with larger fields of view (from several millimeters to several centimeters depending on implementation). Photographic methods have been the mainstay for fluorescence and bioluminescence macroscopy in whole animals, but emphasis is shifting to photonic methods that use tomographic principles to noninvasively image optical contrast at depths of several millimeters to centimeters with high sensitivity and sub-millimeter to millimeter resolution. Recent theoretical and instrumentation advances allow the use of large data sets and multiple projections and offer practical systems for quantitative, three-dimensional whole-body images. For photonic imaging to fully realize its potential, however, further progress will be needed in refining optical inversion methods and data acquisition techniques.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

  2. 2

    Blasberg, R.G. In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations. Nucl. Med. Biol. 30, 879–888 (2003).

  3. 3

    Budinger, T.F., Benaron, D.A. & Koretsky, A.P. Imaging transgenic animals. Annu. Rev. Biomed. Eng. 1, 611–648 (1999).

  4. 4

    Contag, C.H. & Bachmann, M.H. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).

  5. 5

    Piwnica-Worms, D., Schuster, D.P. & Garbow, J.R. Molecular imaging of host-pathogen interactions in intact small animals. Cell. Microbiol. 6, 319–331 (2004).

  6. 6

    Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nat. Rev. Cancer 2, 11–18 (2002).

  7. 7

    Hoffman, R. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol. 3, 546–556 (2002).

  8. 8

    Bornhop, D.J., Contag, C.H., Licha, K. & Murphy, C.J. Advance in contrast agents, reporters, and detection. J. Biomed. Opt. 6, 106–110 (2001).

  9. 9

    Tung, C., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).

  10. 10

    Herschman, H.R. Molecular imaging: looking at problems, seeing solutions. Science 302, 605–608 (2003).

  11. 11

    Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).

  12. 12

    Reynolds, J.S. et al. Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem. Photobiol. 70, 87–94 (1999).

  13. 13

    Mahmood, U., Tung, C., Bogdanov, A. & Weissleder, R. Near infrared optical imaging system to detect tumor protease activity. Radiology 213, 866–870 (1999).

  14. 14

    Yang, M. et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).

  15. 15

    Contag, C.H. & Ross, B.D. It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J. Magn. Reson. Imaging 16, 378–387 (2002).

  16. 16

    Farkas, D.L. et al. Non-invasive image acquisition and advanced processing in optical bioimaging. Comput. Med. Imaging Graph. 22, 89–102 (1998).

  17. 17

    Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

  18. 18

    Arridge, S.R., Schweiger, M., Hiraoka, M. & Delpy, D.T.A. Finite-Element Approach For Modeling Photon Transport In Tissue. Med. Phys. 20, 299–309 (1993).

  19. 19

    Graber, H.L. & Barbour, R.L. High-resolution near-infrared (nir) imaging of dense scattering media by diffusion tomography. FASEB J. 7, A720–A720 (1993).

  20. 20

    Schotland, J.C. & Leigh, J.S. Photon diffusion imaging. FASEB J. 6, A446–A446 (1992).

  21. 21

    Yodh, A.G. & Chance, B. Spectroscopy and imaging with diffusing light. Phys. Today 48, 34–40 (1995).

  22. 22

    Chance, B. Optical Method. Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).

  23. 23

    Jobsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977).

  24. 24

    Patterson, M.S., Chance, B. & Wilson, B.C. Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties. Appl. Opt. 28, 2331–2336 (1989).

  25. 25

    Graves, E., Ripoll, J., Weissleder, R. & Ntziachristos, V.A. Sub-millimeter resolution fluorescence molecular imaging system for small animal imaging. Med. Phys. 30, 901–911 (2003).

  26. 26

    Alfano, R.R. et al. Time-resolved and nonlinear optical imaging for medical applications. Ann. NY Acad. Sci. 838, 14–28 (1998).

  27. 27

    Sevick, E.M., Chance, B., Leigh, J., Nioka, S. & Maris, M. Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation. Anal. Biochem. 195, 330–351 (1991).

  28. 28

    Cai, W. et al. Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements. Appl. Opt. 38, 4237–4246 (1999).

  29. 29

    Chen, K., Perelman, L.T., Zhang, Q.G., Dasari, R.R. & Feld, M.S. Optical computed tomography in a turbid medium using early arriving photons. J. Biomed. Opt. 5, 144–154 (2000).

  30. 30

    Turner, G., Zacharakis, I., Soubret, A. & Ntziachristos, V. Complete angle projection diffuse optical tomography using early photons. Optics Letters 30, 409–411 (2005).

  31. 31

    Boas, D.A., Oleary, M.A., Chance, B. & Yodh, A.G. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media - analytic solution and applications. Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).

  32. 32

    Godavarty, A. et al. Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera. Phys. Med. Biol. 48, 1701–1720 (2003).

  33. 33

    Boas, D.A. et al. Imaging the body with diffuse optical tomography. IEEE Signal Process. Mag. 18, 57–75 (2001).

  34. 34

    Ripoll, J., Schultz, R. & Ntziachristos, V. Free-space propagation of diffuse light: Theory and Experiments. Phys. Rev. Lett. 91, 103901–103904 (2003).

  35. 35

    Schultz, R., Ripoll, J. & Ntziachristos, V. Experimental fluorescence tomography of arbitrarily shaped diffuse objects using non-contact measurements. Opt. Lett. 28, 1701–1703 (2003).

  36. 36

    Schultz, R., Ripoll, J. & Ntziachristos, V. Fluorescence tomography of tissues with non-contact measurements. IEEE Med. Imag. 23, 492–500 (2004).

  37. 37

    Chang, J., Graber, H.L. & Barbour, R.L. Imaging of fluorescence in highly scattering media. IEEE Trans. Biomed. Eng. 44, 810–822 (1997).

  38. 38

    Eppstein, M.J., Hawrysz, D.J., Godavarty, A. & Sevick-Muraca, E.M. Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography. Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

  39. 39

    Jiang, H.B. Frequency-domain fluorescent diffusion tomography: a finite- element-based algorithm and simulations. Appl. Opt. 37, 5337–5343 (1998).

  40. 40

    Milstein, A.B. et al. Fluorescence optical diffusion tomography. Appl. Opt. 42, 3081–3094 (2003).

  41. 41

    Ntziachristos, V. & Weissleder, R. Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation. Opt. Lett. 26, 893–895 (2001).

  42. 42

    Klose, A.D. & Hielscher, A.H. Fluorescence tomography with simulated data based on the equation of radiative transfer. Opt. Lett. 28, 1019–1021 (2003).

  43. 43

    Dehghani, H., Arridge, S.R., Schweiger, M. & Delpy, D.T. Optical tomography in the presence of void regions. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 17, 1659–1670 (2000).

  44. 44

    Ntziachristos, V., Tung, C., Bremer, C. & Weissleder, R. Fluorescence-mediated tomography resolves protease activity in vivo. Nat. Med. 8, 757–760 (2002).

  45. 45

    Ripoll, J., Nieto-Vesperinas, M., Weissleder, R. & Ntziachristos, V. Fast analytical approximation for arbitrary geometries in diffuse optical tomography. Opt. Lett. 27, 527–529 (2002).

  46. 46

    Gu, X., Xu, Y. & Jiang, H. Mesh-based enhancement schemes in diffuse optical tomography. Med. Phys. 30, 861–869 (2003).

  47. 47

    Ye, J.C., Bouman, C.A., Webb, K.J. & Millane, R.P. Nonlinear multigrid algorithms for Bayesian optical diffusion tomography. IEEE Trans. Image Process. 10, 909–922 (2001).

  48. 48

    Vernooy, J., Dentener, M., van Suylen, R., Buurman, W. & Wouters, E. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am. J. Respir. Cell Mol. Biol. 26, 152–159 (2002).

  49. 49

    Lautwein, A. et al. Inflammatory stimuli recruit cathepsin activity to late endosomal compartments in human dendritic cells. Eur. J. Immunol. 32, 3348–3357 (2002).

  50. 50

    Prin-Mathieu, C. et al. Enzymatic activities of bovine peripheral blood leukocytes and milk polymorphonuclear neutrophils during intramammary inflammation caused by lipopolysaccharide. Clin. Diagn. Lab. Immunol. 9, 812–817 (2002).

  51. 51

    Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

  52. 52

    Ntziachristos, V. et al. Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V - Cy5.5 conjugate. Proc. Natl. Acad. Sci. USA 101, 12294–12299 (2004).

  53. 53

    Wang, G., Li, Y. & Jiang, M. Uniqueness theorems in bioluminescence tomography. Med. Phys. 31, 2289–2299 (2004).

  54. 54

    Gu, X., Zhang, Q., Larcom, L. & Jiang, H.B. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt. Express 12, 3996–4000 (2004).

  55. 55

    Hoelen, C.G.A. & de Mul, F.F.M. Image reconstruction for photoacoustic scanning of tissue structures. Appl. Opt. 39, 5872–5883 (2000).

  56. 56

    Wang, X. et al. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt. Lett. 29, 730–732 (2004).

  57. 57

    Wang, X. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21, 803–806 (2003).

  58. 58

    Karabutov, A.A., Savateeva, E.V. & Oraevsky, A.A. Optoacoustic tomography: new modality of laser diagnostic systems. Laser Phys. 13, 711–723 (2003).

Download references

Acknowledgements

V.N. is supported in part by National Institutes of Health (NIH) grants RO1 EB 000750-1, 1-NO1-CO027105 and R33 CA 91807. J. Ripoll acknowledges support from EU Integrated Project “Molecular Imaging” LSHG-CT-2003-503259. R.W. is supported in part by NIH grants P50 CA86355, R24 CA92782, R33 CA091807, PO1 AI054904, PO1 CA69246 and grants from the Donald W. Reynolds Foundation and Siemens Medical Systems.

Author information

Correspondence to Vasilis Ntziachristos.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Modes of data collection.
Figure 2: Spectral imaging applied to in vivo fluorescence detection.
Figure 3: Fluorescence reconstruction of a fluorescent tube inserted in a euthanized animal obtained in the absence of contact detection.
Figure 4: In vivo fluorescence imaging.
Figure 5: Visualization of brain structure and function using photoacoustic tomography (modified from ref. 57.
Figure 6: Performance of planar and tomographic imaging.