Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Multiphoton intravital microscopy of rodents

Abstract

Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intravital microscopy by multiphoton excitation.
Fig. 2: Intravital microscopy of tissues through optical imaging windows.
Fig. 3: Advanced imaging techniques.
Fig. 4: Overcoming tissue motion.
Fig. 5: Bone marrow imaging in situ in the leukaemia mouse model.
Fig. 6: Intravital microscopy of calorie restriction reveals slower and stronger stem cell competition.
Fig. 7: Intravital microscopy of the ductal carcinoma in situ in the PyMT mouse model.

Similar content being viewed by others

References

  1. Janssen, A., Beerling, E., Medema, R. & van Rheenen, J. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy. PLoS ONE 8, e64029 (2013).

    Article  ADS  Google Scholar 

  2. Murphy, D. B. & Davidson, M. W. Fundamentals of Light Microscopy and Electronic Imaging 2nd edn (Wiley, 2012).

  3. Montero Llopis, P. et al. Best practices and tools for reporting reproducible fluorescence microscopy methods. Nat. Methods 18, 1463–1476 (2021).

    Article  Google Scholar 

  4. Wollman, A. J. M., Nudd, R., Hedlund, E. G. & Leake, M. C. From Animaculum to single molecules: 300 years of the light microscope. Open Biol. 5, 150019 (2015).

    Article  Google Scholar 

  5. Pawley, J. B. Handbook of Biological Confocal Microscopy 3rd edn (Springer, 2006).

  6. Rius, C. & Sanz, M. J. Intravital microscopy in the cremaster muscle microcirculation for endothelial dysfunction studies. Methods Mol. Biol. 1339, 357–366 (2015).

    Article  Google Scholar 

  7. Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5, 932–943 (2015). This study uses IVM to show that blood vessel opening and breast cancer cell intravasation are coordinated events that happen only at tumour microenvironment of metastasis doorways: sites within tumour nests where TIE2hi macrophages, Mena-expressing tumour cells and endothelial cells make direct contact.

    Article  Google Scholar 

  8. Kitadate, Y. et al. Competition for mitogens regulates spermatogenic stem cell homeostasis in an open niche. Cell Stem Cell 24, 79–92.e6 (2019).

    Article  Google Scholar 

  9. Upadhaya, S. et al. Intravital imaging reveals motility of adult hematopoietic stem cells in the bone marrow niche. Cell Stem Cell 27, 336–345 (2020).

    Article  Google Scholar 

  10. Christodoulou, C. et al. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature 578, 278–283 (2020).

    Article  ADS  Google Scholar 

  11. Rashidi, N. M. et al. In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells. Blood 124, 79–83 (2014).

    Article  Google Scholar 

  12. Duarte, D. et al. Defining the in vivo characteristics of acute myeloid leukemia cells behavior by intravital imaging. Immunol. Cell Biol. 97, 229–235 (2019).

    Article  Google Scholar 

  13. Hawkins, E. D. et al. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 538, 518–522 (2016).

    Article  ADS  Google Scholar 

  14. Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).

    Article  Google Scholar 

  15. Dondossola, E., Friedl, P., Dondossola, E. & Friedl, P. Host responses to implants revealed by intravital microscopy. Nat. Rev. Mater. 7, 6–22 (2022).

    Article  ADS  Google Scholar 

  16. Ebrahim, S. et al. Dynamic polyhedral actomyosin lattices remodel micron-scale curved membranes during exocytosis in live mice. Nat. Cell Biol. 21, 933–939 (2019).

    Article  Google Scholar 

  17. Porat-Shliom, N. et al. In vivo tissue-wide synchronization of mitochondrial metabolic oscillations. Cell Rep. 9, 514–521 (2014).

    Article  Google Scholar 

  18. Theer, P. & Denk, W. On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A Opt Image Sci. Vis. 23, 3139 (2006).

    Article  ADS  Google Scholar 

  19. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  ADS  Google Scholar 

  20. You, S. et al. Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat. Commun. 9, 2125 (2018).

    Article  ADS  Google Scholar 

  21. Bakker, G. J. et al. Intravital deep-tumor single-beam 3-photon, 4-photon, and harmonic microscopy. eLife 11, e63776 (2022).

    Article  Google Scholar 

  22. Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol. 20, 54–62 (2009).

    Article  Google Scholar 

  23. Kiepas, A., Voorand, E., Mubaid, F., Siegel, P. M. & Brown, C. M. Optimizing live-cell fluorescence imaging conditions to minimize phototoxicity. J. Cell Sci. 133, jcs242834 (2020).

    Article  Google Scholar 

  24. Wang, T. et al. Three-photon imaging of mouse brain structure and function through the intact skull. Nat. Methods 15, 789–792 (2018). This work presents three-photon IVM through the intact skull of vascular and calcium dynamics in the live brain of awake mice at imaging depths of up to ~500 μm.

    Article  Google Scholar 

  25. Scholkmann, F. et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85, 6–27 (2014). This paper, although not focused on IVM, reviews the current state of instrumentation and methodology of near-infrared imaging, and its discussion on the selection of optimum wavelengths gives an excellent description of thenear-infrared windowthat is crucial to the success of multiphoton IVM.

    Article  Google Scholar 

  26. Jansen, K., Wu, M., Van der Steen, A. F. W. & Van Soest, G. Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Photoacoustics 2, 12–20 (2014).

    Article  Google Scholar 

  27. Herz, J. et al. Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator. Biophys. J. 98, 715 (2010).

    Article  ADS  Google Scholar 

  28. Paddock, S. Over the rainbow: 25 years of confocal imaging. Biotechniques 44, 643–648 (2008).

    Article  Google Scholar 

  29. Entenberg, D. et al. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging. Nat. Protoc. 6, 1500–1520 (2011).

    Article  Google Scholar 

  30. Gerritsen, H. C., Vroom, J. M. & De Grauw, C. J. Combining two-photon excitation with fluorescence lifetime imaging. IEEE Eng. Med. Biol. Mag. 18, 31–36 (1999).

    Article  Google Scholar 

  31. Koester, H. J., Baur, D., Uhl, R. & Hell, S. W. Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. Biophys. J. 77, 2226–2236 (1999).

    Article  Google Scholar 

  32. Yang, M. et al. Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc. Natl Acad. Sci. USA 100, 14259–14262 (2003).

    Article  ADS  Google Scholar 

  33. Fan, G. Y. et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J. 76, 2412–2420 (1999).

    Article  ADS  Google Scholar 

  34. Rosenegger, D. G., Tran, C. H. T., LeDue, J., Zhou, N. & Gordon, G. R. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable. PLoS ONE 9, e110475 (2014).

    Article  ADS  Google Scholar 

  35. Rakhymzhan, A. et al. Method for multiplexed dynamic intravital multiphoton imaging. Methods Mol. Biol. 2350, 145–156 (2021).

    Article  Google Scholar 

  36. Bares, A. J. et al. Hyperspectral multiphoton microscopy for in vivo visualization of multiple, spectrally overlapped fluorescent labels. Optica 7, 1587 (2020).

    Article  ADS  Google Scholar 

  37. Tang, S., Liu, J., Krasieva, T. B., Chen, Z. & Tromberg, B. J. Developing compact multiphoton systems using femtosecond fiber lasers. J. Biomed. Opt. 14, 030508 (2009).

    Article  ADS  Google Scholar 

  38. Clough, M. et al. Flexible simultaneous mesoscale two-photon imaging of neural activity at high speeds. Nat. Commun. 12, 6638 (2021).

    Article  ADS  Google Scholar 

  39. Moreno, X. C., Al-Kadhimi, S., Alvelid, J., Bodén, A. & Testa, I. ImSwitch: generalizing microscope control in Python. J. Open Source Softw. 6, 3394 (2021).

    Article  ADS  Google Scholar 

  40. Chhetri, R. et al. Software for microscopy workshop white paper. Preprint at arXiv https://doi.org/10.48550/arxiv.2005.00082 (2020).

    Article  Google Scholar 

  41. Nguyen, Q. T., Tsai, P. S. & Kleinfeld, D. MPScope: a versatile software suite for multiphoton microscopy. J. Neurosci. Methods 156, 351–359 (2006).

    Article  Google Scholar 

  42. Nguyen, Q.-T., Driscoll, J., Dolnick, E. M. & Kleinfeld, D. in In Vivo Optical Imaging of Brain Function 2nd edn Ch. 4 (Frostig, R. D.) 133–158 (CRC, 2009).

  43. Pinkard, H. et al. Pycro-Manager: open-source software for customized and reproducible microscope control. Nat. Methods 18, 226–228 (2021).

    Article  Google Scholar 

  44. Cardin, J. A., Crair, M. C. & Higley, M. J. Mesoscopic imaging: shining a wide light on large-scale neural dynamics. Neuron 108, 33–43 (2020).

    Article  Google Scholar 

  45. Tehranian, C. et al. The PI3K/Akt/mTOR pathway as a preventive target in melanoma brain metastasis. Neuro Oncol. 24, 213–225 (2022).

    Article  Google Scholar 

  46. Shaw, K. et al. Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences. Nat. Commun. 12, 3190 (2021).

    Article  ADS  Google Scholar 

  47. Stevenson, A. J. et al. Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proc. Natl Acad. Sci. USA 117, 26822–26832 (2020).

    Article  ADS  Google Scholar 

  48. Headley, M. B. et al. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 531, 513–517 (2016).

    Article  ADS  Google Scholar 

  49. Hawkins, E. D. et al. Intravital imaging of cardiac function at the single-cell level. Nature 111, 11257–11262 (2017).

    Google Scholar 

  50. Alieva, M., Ritsma, L., Giedt, R. J., Weissleder, R. & van Rheenen, J. Imaging windows for long-term intravital imaging: general overview and technical insights. Intravital 3, e29917 (2014).

    Article  Google Scholar 

  51. Messal, H. A., van Rheenen, J. & Scheele, C. L. G. J. An intravital microscopy toolbox to study mammary gland dynamics from cellular level to organ scale. J. Mammary Gland Biol. Neoplasia 26, 9–27 (2021).

    Article  Google Scholar 

  52. Entenberg, D. et al. A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat. Methods 15, 73–80 (2018). This article uses surgical engineering to develop and validate an implantable optical window for serially visualizing the murine lung with single cell-resolution IVM over a period of weeks. This is used to visualize each step of the metastatic cascade (arrival, lodging, survival, extravasation and growth) in the lung.

    Article  Google Scholar 

  53. Ritsma, L. et al. Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Sci. Transl Med. 4, 158ra145 (2012).

    Article  Google Scholar 

  54. Cramer, S. W. et al. Through the looking glass: a review of cranial window technology for optical access to the brain. J. Neurosci. Methods 354, 109100 (2021).

    Article  Google Scholar 

  55. Maiorino, L. et al. Longitudinal intravital imaging through clear silicone windows. J. Vis. Exp. https://doi.org/10.3791/62757 (2022).

    Article  Google Scholar 

  56. Jacquemin, G. et al. Longitudinal high-resolution imaging through a flexible intravital imaging window. Sci. Adv. 7, eabg7663 (2021).

    Article  ADS  Google Scholar 

  57. Mourao, L., Ciwinska, M., Rheenen, Jvan & Scheele, C. L. G. J. Longitudinal intravital microscopy using a mammary imaging window with replaceable lid. J. Vis. Exp. https://doi.org/10.3791/63326 (2022).

    Article  Google Scholar 

  58. Huang, Q. et al. Intravital imaging of mouse embryos. Science 368, 181–186 (2020). This work presents a removable imaging window implanted above the uterus allowing IVM of live embryonic development in utero as well as embryonic manipulation for IVM studies.

    Article  ADS  Google Scholar 

  59. Okano, F., Arai, J. & Okui, M. Amplified optical window for three-dimensional images. Opt. Lett. 31, 1842–1844 (2006).

    Article  ADS  Google Scholar 

  60. Yang, Y. et al. A two-step GRIN lens coating for in vivo brain imaging. Neurosci. Bull. 35, 419 (2019).

    Article  Google Scholar 

  61. Zhang, L. et al. Unit title: miniscope GRIN lens system for calcium imaging of neuronal activity from deep brain structures in behaving animals. Curr. Protoc. Neurosci. 86, e56 (2019).

    Article  Google Scholar 

  62. Rakhilin, N. et al. An intravital window to image the colon in real time. Nat. Commun. 10, 5647 (2019).

    Article  ADS  Google Scholar 

  63. Heo, C. et al. A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci. Rep. 6, 27818 (2016).

    Article  ADS  Google Scholar 

  64. Entenberg, D. et al. Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods 128, 65–77 (2017).

    Article  Google Scholar 

  65. Ewald, A. J., Werb, Z. & Egeblad, M. Preparation of mice for long-term intravital imaging of the mammary gland. Cold Spring Harb. Protoc. 2011, pdb.prot5562 (2011).

    Article  Google Scholar 

  66. Dawson, C. A., Mueller, S. N., Lindeman, G. J., Rios, A. C. & Visvader, J. E. Intravital microscopy of dynamic single-cell behavior in mouse mammary tissue. Nat. Protoc. 16, 1907–1935 (2021).

    Article  Google Scholar 

  67. Ewald, A. J., Werb, Z. & Egeblad, M. Monitoring of vital signs for long-term survival of mice under anesthesia. Cold Spring Harb. Protoc. 2011, pdb.prot5563 (2011).

    Article  Google Scholar 

  68. Erami, Z. et al. Intravital FRAP imaging using an E-cadherin–GFP mouse reveals disease- and drug-dependent dynamic regulation of cell–cell junctions in live tissue. Cell Rep. 14, 152–167 (2016).

    Article  Google Scholar 

  69. Nobis, M. et al. Intravital FLIM–FRET imaging reveals dasatinib-induced spatial control of Src in pancreatic cancer. Cancer Res. 73, 4674–4686 (2013).

    Article  Google Scholar 

  70. Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods 5, 1019–1021 (2008).

    Article  Google Scholar 

  71. Sun, W. et al. In vivo two-photon imaging of anesthesia-specific alterations in microglial surveillance and photodamage-directed motility in mouse cortex. Front. Neurosci. 13, 421 (2019).

    Article  Google Scholar 

  72. Chen, C. et al. Long-term imaging of dorsal root ganglia in awake behaving mice. Nat. Commun. 10, 3087 (2019).

    Article  ADS  Google Scholar 

  73. Yang, W. et al. Anesthetics fragment hippocampal network activity, alter spine dynamics, and affect memory consolidation. PLoS Biol. 19, e3001146 (2021).

    Article  Google Scholar 

  74. Scherf, N. & Huisken, J. The smart and gentle microscope. Nat. Biotechnol. 33, 815–818 (2015).

    Article  Google Scholar 

  75. Follain, G. et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat. Rev. Cancer 20, 107–124 (2020).

    Article  Google Scholar 

  76. Laine, R. et al. Fluorescence lifetime readouts of Troponin-C-based calcium FRET sensors: a quantitative comparison of CFP and mTFP1 as donor fluorophores. PLoS ONE 7, e49200 (2012).

    Article  ADS  Google Scholar 

  77. Roche, M. et al. In vivo imaging with a water immersion objective affects brain temperature, blood flow and oxygenation. eLife 8, e47324 (2019).

    Article  Google Scholar 

  78. Barkaway, A. et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage. Immunity 54, 1494–1510.e7 (2021).

    Article  Google Scholar 

  79. Milberg, O. et al. Concerted actions of distinct nonmuscle myosin II isoforms drive intracellular membrane remodeling in live animals. J. Cell Biol. 216, 1925–1936 (2017).

    Article  Google Scholar 

  80. Masedunskas, A. & Weigert, R. Intravital two-photon microscopy for studying the uptake and trafficking of fluorescently conjugated molecules in live rodents. Traffic 9, 1801–1810 (2008).

    Article  Google Scholar 

  81. Mo, G. C. H., Posner, C., Rodriguez, E. A., Sun, T. & Zhang, J. A rationally enhanced red fluorescent protein expands the utility of FRET biosensors. Nat. Commun. 11, 1848 (2020).

    Article  ADS  Google Scholar 

  82. Wannier, T. M. et al. Monomerization of far-red fluorescent proteins. Proc. Natl Acad. Sci. USA 115, E11294–E11301 (2018).

    Article  ADS  Google Scholar 

  83. Zhang, S. & Ai, H. W. A general strategy to red-shift green fluorescent protein-based biosensors. Nat. Chem. Biol. 16, 1434–1439 (2020).

    Article  Google Scholar 

  84. Murphy, K. J. et al. Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Sci. Adv. 7, eabh0363 (2021). This work on IVM of metastatic pancreatic cancer demonstrates that short-term FAK inhibition reduces tissue fibrosis and improves standard-of-care chemotherapy performance at primary and secondary cancer sites leading to a significant extension in pancreatic cancer survival.

    Article  ADS  Google Scholar 

  85. Chishima, T. et al. Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res. 57, 2042–2047 (1997).

    Google Scholar 

  86. Farina, K. L. et al. Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Res. 58, 2528–2532 (1998).

    Google Scholar 

  87. Stolp, B. et al. Salivary gland macrophages and tissue-resident CD8+ T cells cooperate for homeostatic organ surveillance. Sci. Immunol. 5, eaaz4371 (2020).

    Article  Google Scholar 

  88. Pittet, M. J. et al. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. Cell 11, 1100–1111 (2018).

    Google Scholar 

  89. Steenbeek, S. C. et al. Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles. EMBO J. 37, e98357 (2018).

    Article  Google Scholar 

  90. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    Article  Google Scholar 

  91. Lai, C. P. et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 6, 7029 (2015).

    Article  ADS  Google Scholar 

  92. Barnabe-Heider, F. et al. Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nat. Methods 5, 189–196 (2008).

    Article  Google Scholar 

  93. Matsuda, T. & Cepko, C. L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl Acad. Sci. USA 101, 16–22 (2004).

    Article  ADS  Google Scholar 

  94. Maruyama, H. et al. Skin-targeted gene transfer using in vivo electroporation. Gene Ther. 8, 1808–1812 (2001).

    Article  Google Scholar 

  95. Aung, W. et al. Visualization of in vivo electroporation-mediated transgene expression in experimental tumors by optical and magnetic resonance imaging. Gene Ther. 16, 830–839 (2009).

    Article  Google Scholar 

  96. Buckley, S. M. et al. Lentiviral transduction of the murine lung provides efficient pseudotype and developmental stage-dependent cell-specific transgene expression. Gene Ther. 15, 1167–1175 (2008).

    Article  Google Scholar 

  97. Reetz, J. et al. Development of adenoviral delivery systems to target hepatic stellate cells in vivo. PLoS ONE 8, e67091 (2013).

    Article  ADS  Google Scholar 

  98. Thanabalasuriar, A., Neupane, A. S., Wang, J., Krummel, M. F. & Kubes, P. iNKT cell emigration out of the lung vasculature requires neutrophils and monocyte-derived dendritic cells in inflammation. Cell Rep. 16, 3260–3272 (2016).

    Article  Google Scholar 

  99. Dawson, C. A. et al. Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. Nat. Cell Biol. 22, 546–558 (2020).

    Article  Google Scholar 

  100. Surewaard, B. G. J. et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J. Exp. Med. 213, 1141–1151 (2016).

    Article  Google Scholar 

  101. Park, I. et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur. Respir. J. 53, 1800786 (2019).

    Article  Google Scholar 

  102. McDonald, B. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129, 1357–1367 (2017).

    Article  Google Scholar 

  103. Choe, K. et al. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility. J. Clin. Invest. 125, 4042–4052 (2015).

    Article  Google Scholar 

  104. Moon, J. et al. Intravital two-photon imaging and quantification of hepatic steatosis and fibrosis in a live small animal model. Biomed. Opt. Express 12, 7918–7927 (2021).

    Article  Google Scholar 

  105. Masedunskas, A. et al. Kinetics of milk lipid droplet transport, growth, and secretion revealed by intravital imaging: lipid droplet release is intermittently stimulated by oxytocin. Mol. Biol. Cell 28, 935–946 (2017).

    Article  Google Scholar 

  106. Beerling, E. et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep. 14, 2281–2288 (2016).

    Article  Google Scholar 

  107. Bornes, L. et al. Fsp1-mediated lineage tracing fails to detect the majority of disseminating cells undergoing EMT. Cell Rep. 29, 2565–2569.e3 (2019).

    Article  Google Scholar 

  108. Ritsma, L. et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362–365 (2014).

    Article  ADS  Google Scholar 

  109. Fumagalli, A. et al. Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell 26, 569–578.e7 (2020).

    Article  Google Scholar 

  110. Zomer, A. et al. Brief report: intravital imaging of cancer stem cell plasticity in mammary tumors. Stem Cell 31, 602–606 (2013).

    Article  Google Scholar 

  111. Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).

    Article  Google Scholar 

  112. Konagaya, Y. et al. Intravital imaging reveals cell cycle-dependent myogenic cell migration during muscle regeneration. Cell Cycle 19, 3167–3181 (2020).

    Article  Google Scholar 

  113. Bayarmagnai, B. et al. Invadopodia-mediated ECM degradation is enhanced in the G1 phase of the cell cycle. J. Cell Sci. 132, jcs227116 (2019).

    Article  Google Scholar 

  114. Eastman, A. E. et al. Resolving cell cycle speed in one snapshot with a live-cell fluorescent reporter. Cell Rep. 31, 107804 (2020).

    Article  Google Scholar 

  115. Jennings, E. et al. Nr4a1 and Nr4a3 reporter mice are differentially sensitive to T cell receptor signal strength and duration. Cell Rep. 33, 108328 (2020).

    Article  Google Scholar 

  116. Bending, D. et al. A timer for analyzing temporally dynamic changes in transcription during differentiation in vivo. J. Cell Biol. 217, 2931–2950 (2018).

    Article  Google Scholar 

  117. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  ADS  Google Scholar 

  118. Cai, D., Cohen, K. B., Luo, T., Lichtman, J. W. & Sanes, J. R. Improved tools for the Brainbow toolbox. Nat. Methods 10, 540–547 (2013).

    Article  Google Scholar 

  119. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  Google Scholar 

  120. Tabansky, I. et al. Developmental bias in cleavage-stage mouse blastomeres. Curr. Biol. 23, 21–31 (2013).

    Article  Google Scholar 

  121. Scheele, C. L. G. J. et al. Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 542, 313–317 (2017).

    Article  ADS  Google Scholar 

  122. Corominas-Murtra, B. et al. Stem cell lineage survival as a noisy competition for niche access. Proc. Natl Acad. Sci. USA 117, 201921205 (2020).

    Article  Google Scholar 

  123. Shirshin, E. A. et al. Label-free multiphoton microscopy: the origin of fluorophores and capabilities for analyzing biochemical processes. Biochemistry. 84, 69–88 (2019).

    Google Scholar 

  124. El Waly, B., Buttigieg, E., Karakus, C., Brustlein, S. & Debarbieux, F. Longitudinal intravital microscopy reveals axon degeneration concomitant with inflammatory cell infiltration in an LPC model of demyelination. Front. Cell. Neurosci. 14, 165 (2020).

    Article  Google Scholar 

  125. Feizpour, A., Marstrand, T., Bastholm, L., Eirefelt, S. & Evans, C. L. Label-free quantification of pharmacokinetics in skin with stimulated raman scattering microscopy and deep learning. J. Invest. Dermatol. 141, 395–403 (2021).

    Article  Google Scholar 

  126. Estrada, H. et al. Intravital optoacoustic and ultrasound bio-microscopy reveal radiation-inhibited skull angiogenesis. Bone 133, 115251 (2020).

    Article  Google Scholar 

  127. Ron, A., Dean-Ben, X. L., Gottschalk, S. & Razansky, D. Volumetric optoacoustic imaging unveils high-resolution patterns of acute and cyclic hypoxia in a murine model of breast cancer. Cancer Res. 79, 4767–4775 (2019).

    Article  Google Scholar 

  128. Mazumder, N. et al. Label-free non-linear multimodal optical microscopy — basics, development, and applications. Front. Phys. 7, 170 (2019).

    Article  Google Scholar 

  129. Tian, L. et al. Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory. J. Appl. Phys. 108, 054701 (2010).

    Article  ADS  Google Scholar 

  130. Chen, X., Nadiarynkh, O., Plotnikov, S. & Campagnola, P. J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7, 654–669 (2012).

    Article  Google Scholar 

  131. Weigelin, B., Bakker, G. J. & Friedl, P. Third harmonic generation microscopy of cells and tissue organization. J. Cell Sci. 129, 245–255 (2016).

    Google Scholar 

  132. You, S. et al. Label-free visualization and characterization of extracellular vesicles in breast cancer. Proc. Natl Acad. Sci. USA 116, 24012–24018 (2019).

    Article  ADS  Google Scholar 

  133. Winfree, S., Hato, T. & Day, R. N. Intravital microscopy of biosensor activities and intrinsic metabolic states. Methods 128, 95–104 (2017).

    Article  Google Scholar 

  134. Zurauskas, M. et al. Assessing the severity of psoriasis through multivariate analysis of optical images from non-lesional skin. Sci. Rep. 10, 9154 (2020).

    Article  ADS  Google Scholar 

  135. Conway, J. R. W. et al. Developments in preclinical cancer imaging: innovating the discovery of therapeutics. Nat. Rev. Cancer 14, 314–328 (2014).

    Article  Google Scholar 

  136. Miller, M. A. & Weissleder, R. Imaging of anticancer drug action in single cells. Nat. Rev. Cancer 17, 399–414 (2017).

    Article  Google Scholar 

  137. Nakasone, E. S. et al. Imaging tumor–stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21, 488–503 (2012). This study uses IVM to visualize the effect of the chemotherapy on breast tumours and finds that chemotherapy induces a CCR2-mediated infiltration of myeloid cells into the tumour, which when blocked leads to better responses to treatment.

    Article  Google Scholar 

  138. Timpson, P., Mcghee, E. J. & Anderson, K. I. Imaging molecular dynamics in vivo-from cell biology to animal models. J. Cell Sci. 124, 2877–2890 (2011).

    Article  Google Scholar 

  139. Nobis, M. et al. Molecular mobility and activity in an intravital imaging setting — implications for cancer progression and targeting. J. Cell Sci. 131, jcs206995 (2018).

    Article  Google Scholar 

  140. Ebrahim, S. & Weigert, R. Intravital microscopy in mammalian multicellular organisms. Curr. Opin. Cell Biol. 59, 97–103 (2019).

    Article  Google Scholar 

  141. Serrels, A. et al. Real-time study of E-cadherin and membrane dynamics in living animals: implications for disease modeling and drug development. Cancer Res. 69, 2714–2719 (2009).

    Article  Google Scholar 

  142. Appaduray, M. A. et al. Recruitment kinetics of tropomyosin Tpm3.1 to actin filament bundles in the cytoskeleton is independent of actin filament kinetics. PLoS ONE 11, e0168203 (2016).

    Article  Google Scholar 

  143. Chodaczek, G., Toporkiewicz, M., Zal, M. A. & Zal, T. Epidermal T cell dendrites serve as conduits for bidirectional trafficking of granular cargo. Front. Immunol. 9, 1430 (2018).

    Article  Google Scholar 

  144. Graves, A. R. et al. Visualizing synaptic plasticity in vivo by large-scale imaging of endogenous AMPA receptors. eLife 10, e66809 (2021).

    Article  Google Scholar 

  145. Spinelli, K. J. et al. Presynaptic α-synuclein aggregation in a mouse model of Parkinson’s disease. J. Neurosci. 34, 2037–2050 (2014).

    Article  Google Scholar 

  146. Machado, M. J. & Mitchell, C. A. Temporal changes in microvessel leakiness during wound healing discriminated by in vivo fluorescence recovery after photobleaching. J. Physiol. 589, 4681–4696 (2011).

    Article  Google Scholar 

  147. Bouta, E. M. et al. In vivo quantification of lymph viscosity and pressure in lymphatic vessels and draining lymph nodes of arthritic joints in mice. J. Physiol. 592, 1213–1223 (2014).

    Article  Google Scholar 

  148. Yi, C., Teillon, J., Koulakoff, A., Berry, H. & Giaume, C. Monitoring gap junctional communication in astrocytes from acute adult mouse brain slices using the gap-FRAP technique. J. Neurosci. Methods 303, 103–113 (2018).

    Article  Google Scholar 

  149. Abbaci, M. et al. Gap junctional intercellular communication capacity by gap-FRAP technique: a comparative study. Biotechnol. J. 2, 50–61 (2007).

    Article  Google Scholar 

  150. Farnsworth, N. L., Hemmati, A., Pozzoli, M. & Benninger, R. K. Fluorescence recovery after photobleaching reveals regulation and distribution of connexin36 gap junction coupling within mouse islets of Langerhans. J. Physiol. 592, 4431–4446 (2014).

    Article  Google Scholar 

  151. Pluen, A. et al. Role of tumor–host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc. Natl Acad. Sci. USA 98, 4628–4633 (2001).

    Article  ADS  Google Scholar 

  152. Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J. & Jain, R. K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60, 2497–2503 (2000).

    Google Scholar 

  153. Vartak, N. et al. Intravital dynamic and correlative imaging of mouse livers reveals diffusion-dominated canalicular and flow-augmented ductular bile flux. Hepatology 73, 1531–1550 (2021).

    Article  Google Scholar 

  154. Kaur, G. et al. Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy. Nat. Commun. 4, 1637 (2013).

    Article  ADS  Google Scholar 

  155. Sullivan, K. D., Majewska, A. K. & Brown, E. B. Single- and two-photon fluorescence recovery after photobleaching. Cold Spring Harb. Protoc. 2015, pdb top083519 (2015).

    Article  Google Scholar 

  156. Fritzsche, M. & Charras, G. Dissecting protein reaction dynamics in living cells by fluorescence recovery after photobleaching. Nat. Protoc. 10, 660–680 (2015).

    Article  Google Scholar 

  157. Moran, I. & Phan, T. G. Fate mapping and transcript profiling of germinal center cells by two-photon photoconversion. Methods Mol. Biol. 1623, 59–72 (2017).

    Article  Google Scholar 

  158. Fumagalli, A. et al. Genetic dissection of colorectal cancer progression by orthotopic transplantation of engineered cancer organoids. Proc. Natl Acad. Sci. USA 114, E2357–E2364 (2017).

    Article  Google Scholar 

  159. Floerchinger, A. et al. Optimizing metastatic-cascade-dependent Rac1 targeting in breast cancer: guidance using optical window intravital FRET imaging. Cell Rep. 36, 109689 (2021).

    Article  Google Scholar 

  160. Alieva, M. et al. Preventing inflammation inhibits biopsy-mediated changes in tumor cell behavior. Sci. Rep. 7, 7529 (2017).

    Article  ADS  Google Scholar 

  161. Borriello, L., Condeelis, J., Entenberg, D. & Oktay, M. H. Breast cancer cell re-dissemination from lung metastases — a mechanism for enhancing metastatic burden. J. Clin. Med. 10, 2340 (2021).

    Article  Google Scholar 

  162. Fluegen, G. et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat. Cell Biol. 19, 120–132 (2017).

    Article  Google Scholar 

  163. Alieva, M. et al. Intravital imaging of glioma border morphology reveals distinctive cellular dynamics and contribution to tumor cell invasion. Sci. Rep. 9, 2054 (2019).

    Article  ADS  Google Scholar 

  164. Kitano, M. et al. Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. Proc. Natl Acad. Sci. USA 113, 1044–1049 (2016).

    Article  ADS  Google Scholar 

  165. Torcellan, T. et al. In vivo photolabeling of tumor-infiltrating cells reveals highly regulated egress of T-cell subsets from tumors. Proc. Natl Acad. Sci. USA 114, 5677–5682 (2017).

    Article  ADS  Google Scholar 

  166. Suan, D. et al. T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses. Immunity 42, 704–718 (2015).

    Article  Google Scholar 

  167. Amornphimoltham, P. et al. Rab25 regulates invasion and metastasis in head and neck cancer. Clin. Cancer Res. 19, 1375–1388 (2013).

    Article  Google Scholar 

  168. Holmes, B. B. et al. Proteopathic tau seeding predicts tauopathy in vivo. Proc. Natl Acad. Sci. USA 111, E4376–E4385 (2014).

    Article  Google Scholar 

  169. Ouyang, M. et al. Visualization of polarized membrane type 1 matrix metalloproteinase activity in live cells by fluorescence resonance energy transfer imaging. J. Biol. Chem. 283, 17740–17748 (2008).

    Article  Google Scholar 

  170. Harvey, C. D. et al. A genetically encoded fluorescent sensor of ERK activity. Proc. Natl Acad. Sci. USA 105, 19264–19269 (2008).

    Article  ADS  Google Scholar 

  171. Ishii, M., Tateya, T., Matsuda, M. & Hirashima, T. Retrograde ERK activation waves drive base-to-apex multicellular flow in murine cochlear duct morphogenesis. eLife 10, e61092 (2021).

    Article  Google Scholar 

  172. Kinjo, T. et al. FRET-assisted photoactivation of flavoproteins for in vivo two-photon optogenetics. Nat. Methods 16, 1029–1036 (2019). This work develops FRET-mediated photoactivation and genetically engineered mouse models to allow single-cell two-photon excitation of optogenetic proteins for IVM.

    Article  Google Scholar 

  173. Hiratsuka, T. et al. Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin. eLife 4, e05178 (2015).

    Article  Google Scholar 

  174. Hirata, E. et al. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell 27, 574–588 (2015).

    Article  Google Scholar 

  175. Yan, C. et al. Peripheral-specific Y1 receptor antagonism increases thermogenesis and protects against diet-induced obesity. Nat. Commun. 12, 2622 (2021).

    Article  ADS  Google Scholar 

  176. Yoshizaki, H., Mochizuki, N., Gotoh, Y. & Matsuda, M. Akt–PDK1 complex mediates epidermal growth factor-induced membrane protrusion through Ral activation. Mol. Biol. Cell 18, 119–128 (2007).

    Article  Google Scholar 

  177. Vennin, C. et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci. Transl Med. 9, eaai8504 (2017). This study uses IVM to demonstrate that fine-tuned manipulation of tissue tension and vascular patency in pancreatic cancer via ROCK inhibition can improve chemotherapy performance in the primary tumour and secondary metastases leading to a significant improvement in pancreatic cancer outcome.

    Article  Google Scholar 

  178. Warren, S. C. et al. Removing physiological motion from intravital and clinical functional imaging data. eLife 7, e35800 (2018).

    Article  Google Scholar 

  179. Seong, J. et al. Detection of focal adhesion kinase activation at membrane microdomains by fluorescence resonance energy transfer. Nat. Commun. 2, 406 (2011).

    Article  ADS  Google Scholar 

  180. Murphy, K. J., Reed, D. A., Trpceski, M., Herrmann, D. & Timpson, P. Quantifying and visualising the nuances of cellular dynamics in vivo using intravital imaging. Curr. Opin. Cell Biol. 72, 41–53 (2021).

    Article  Google Scholar 

  181. Li, C. et al. A FRET biosensor for ROCK based on a consensus substrate sequence identified by KISS technology. Cell Struct. Funct. 42, 1–13 (2017).

    Article  ADS  Google Scholar 

  182. Imanishi, A. et al. Visualization of spatially-controlled vasospasm by sympathetic nerve-mediated ROCK activation. Am. J. Pathol. 191, 194–203 (2021).

    Article  Google Scholar 

  183. Ng, T. S. C., Garlin, M. A., Weissleder, R. & Miller, M. A. Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics 10, 968–997 (2020).

    Article  Google Scholar 

  184. Nobis, M. et al. A RhoA-FRET biosensor mouse for intravital imaging in normal tissue homeostasis and disease contexts. Cell Rep. 21, 274–288 (2017).

    Article  Google Scholar 

  185. Johnsson, A. E. et al. The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues. Cell Rep. 6, 1153–1164 (2014).

    Article  Google Scholar 

  186. Kondo, H. et al. Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Rep. 34, 108750 (2021).

    Article  Google Scholar 

  187. Potzkei, J. et al. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biol. 10, 28 (2012).

    Article  Google Scholar 

  188. Awaji, T., Hirasawa, A., Shirakawa, H., Tsujimoto, G. & Miyazaki, S. Novel green fluorescent protein-based ratiometric indicators for monitoring pH in defined intracellular microdomains. Biochem. Biophys. Res. Commun. 289, 457–462 (2001).

    Article  Google Scholar 

  189. Watabe, T., Terai, K., Sumiyama, K. & Matsuda, M. Booster, a red-shifted genetically encoded Förster resonance energy transfer (FRET) biosensor compatible with cyan fluorescent protein/yellow fluorescent protein-based FRET biosensors and blue light-responsive optogenetic tools. ACS Sens. 5, 719–730 (2020).

    Article  Google Scholar 

  190. Shcherbakova, D. M., Cox Cammer, N., Huisman, T. M., Verkhusha, V. V. & Hodgson, L. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat. Chem. Biol. 14, 591–600 (2018).

    Article  Google Scholar 

  191. Shcherbakova, D. M., Stepanenko, O. V., Turoverov, K. K. & Verkhusha, V. V. Near-infrared fluorescent proteins: multiplexing and optogenetics across scales. Trends Biotechnol. 36, 1230–1243 (2018).

    Article  Google Scholar 

  192. Zhang, J. Z. et al. Phase separation of a PKA regulatory subunit controls cAMP compartmentation and oncogenic signaling. Cell 182, 1531–1544.e15 (2020).

    Article  Google Scholar 

  193. Bock, A. et al. Optical mapping of cAMP signaling at the nanometer scale. Cell 182, 1519–1530.e17 (2020).

    Article  Google Scholar 

  194. Yang, J. M. et al. Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell 184, 6193–6206.e14 (2021).

    Article  Google Scholar 

  195. Ni, Q., Mehta, S. & Zhang, J. Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS J. 285, 203–219 (2018).

    Article  Google Scholar 

  196. Conway, J. R. W., Warren, S. C. & Timpson, P. Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors. Methods 128, 78–94 (2017).

    Article  Google Scholar 

  197. Ulbricht, C. et al. Intravital quantification reveals dynamic calcium concentration changes across B cell differentiation stages. eLife 10, e56020 (2021).

    Article  Google Scholar 

  198. Skala, M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl Acad. Sci. USA 104, 19494–19499 (2007).

    Article  ADS  Google Scholar 

  199. Sparks, H. et al. Heterogeneity in tumor chromatin-doxorubicin binding revealed by in vivo fluorescence lifetime imaging confocal endomicroscopy. Nat. Commun. 9, 2662 (2018).

    Article  ADS  Google Scholar 

  200. Soulet, D., Lamontagne-Proulx, J., Aube, B. & Davalos, D. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J. Microsc. 278, 3–17 (2020).

    Article  Google Scholar 

  201. Masedunskas, A. et al. Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy. Proc. Natl Acad. Sci. USA 108, 13552–13557 (2011).

    Article  ADS  Google Scholar 

  202. Amornphimoltham, P., Thompson, J., Melis, N. & Weigert, R. Non-invasive intravital imaging of head and neck squamous cell carcinomas in live mice. Methods 128, 3–11 (2017).

    Article  Google Scholar 

  203. Ritsma, L. et al. Surgical implantation of an abdominal imaging window for intravital microscopy. Nat. Protoc. 8, 583–594 (2013).

    Article  Google Scholar 

  204. Morimoto, A. et al. SLPI is a critical mediator that controls PTH-induced bone formation. Nat. Commun. 12, 2136 (2021).

    Article  ADS  Google Scholar 

  205. Furuya, M. et al. Direct cell–cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat. Commun. 9, 300 (2018).

    Article  ADS  Google Scholar 

  206. Sekiguchi, K. J. et al. Imaging large-scale cellular activity in spinal cord of freely behaving mice. Nat. Commun. 7, 11450 (2016).

    Article  ADS  Google Scholar 

  207. Laffray, S. et al. Adaptive movement compensation for in vivo imaging of fast cellular dynamics within a moving tissue. PLoS ONE 6, e19928 (2011).

    Article  ADS  Google Scholar 

  208. Vladymyrov, M., Haghayegh Jahromi, N., Kaba, E., Engelhardt, B. & Ariga, A. VivoFollow 2: distortion-free multiphoton intravital imaging. Front. Phys. 7, 222 (2020).

    Article  Google Scholar 

  209. Soulet, D., Pare, A., Coste, J. & Lacroix, S. Automated filtering of intrinsic movement artifacts during two-photon intravital microscopy. PLoS ONE 8, e53942 (2013).

    Article  ADS  Google Scholar 

  210. Dunn, K. W., Lorenz, K. S., Salama, P. & Delp, E. J. IMART software for correction of motion artifacts in images collected in intravital microscopy. Intravital 3, e28210 (2014).

    Article  Google Scholar 

  211. Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  ADS  Google Scholar 

  212. Sharma, V. P. et al. Live tumor imaging shows macrophage induction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination. Nat. Commun. 12, 7300 (2021). This article uses IVM of a fluorescent reporter for stemness to determine that tumour-associated macrophages induce programmes of stemness in disseminating breast cancer cells as they intravasate, and that this stemness phenotype is carried with the cells to the secondary site of the lung.

    Article  ADS  Google Scholar 

  213. Sharma, V. ImageJ plugin HyperStackReg V5.6. Zenodo https://zenodo.org/record/2252521#.YzagunZBz-g (2018).

  214. Ershov, D. et al. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nat. Methods 19, 829–832 (2022).

    Article  Google Scholar 

  215. Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    Article  Google Scholar 

  216. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    Article  Google Scholar 

  217. Chenouard, N., Bloch, I. & Olivo-Marin, J. C. Multiple hypothesis tracking for cluttered biological image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2736–2750 (2013).

    Article  Google Scholar 

  218. Pizzagalli, D. U. et al. Leukocyte tracking database, a collection of immune cell tracks from intravital 2-photon microscopy videos. Sci. Data 5, 1–13 (2018).

    Article  Google Scholar 

  219. Pizzagalli, D. U., Gonzalez, S. F. & Krause, R. A trainable clustering algorithm based on shortest paths from density peaks. Sci. Adv. 5, eaax3770 (2019).

    Article  ADS  Google Scholar 

  220. Pizzagalli, D. U., Thelen, M., Gonzalez, S. F. & Krause, R. Semi-supervised machine learning facilitates cell colocalization and tracking in intravital microscopy. Preprint at bioRxiv https://doi.org/10.1101/829838 (2019).

    Article  Google Scholar 

  221. Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).

    Article  Google Scholar 

  222. Joseph, A., Chu, C. J., Feng, G., Dholakia, K. & Schallek, J. Label-free imaging of immune cell dynamics in the living retina using adaptive optics. eLife 9, e60547 (2020).

    Article  Google Scholar 

  223. Cheung, B. C. H., Hodgson, L., Segall, J. E. & Wu, M. Spatial and temporal dynamics of RhoA activities of single breast tumor cells in a 3D environment revealed by a machine learning-assisted FRET technique. Exp. Cell Res. 410, 112939 (2022).

    Article  Google Scholar 

  224. Gomez-de-Mariscal, E. et al. DeepImageJ: a user-friendly environment to run deep learning models in ImageJ. Nat. Methods 18, 1192–1195 (2021).

    Article  Google Scholar 

  225. von Chamier, L. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. 12, 2276 (2021).

    Article  ADS  Google Scholar 

  226. Laine, R. F., Arganda-Carreras, I., Henriques, R. & Jacquemet, G. Avoiding a replication crisis in deep-learning-based bioimage analysis. Nat. Methods 18, 1136–1144 (2021).

    Article  Google Scholar 

  227. Lopez, B. et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat. Rev. Cardiol. 18, 479–498 (2021).

    Article  Google Scholar 

  228. Cox, T. R. The matrix in cancer. Nat. Rev. Cancer 21, 217–238 (2021).

    Article  Google Scholar 

  229. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  Google Scholar 

  230. Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  231. Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

    Article  Google Scholar 

  232. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  Google Scholar 

  233. Collins, T. J. ImageJ for microscopy. Biotechniques 43, 25–30 (2007).

    Article  Google Scholar 

  234. Schroeder, A. B. et al. The ImageJ ecosystem: open-source software for image visualization, processing, and analysis. Protein Sci. 30, 234–249 (2021).

    Article  Google Scholar 

  235. Gilles, J. F. & Boudier, T. TAPAS: towards automated processing and analysis of multi-dimensional bioimage data. F1000Res 9, 1278 (2020).

    Article  Google Scholar 

  236. Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  Google Scholar 

  237. Butcher, E. C. Leukocyte–endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  Google Scholar 

  238. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  Google Scholar 

  239. Weigelin, B. et al. Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nat. Commun. 12, 5217 (2021).

    Article  ADS  Google Scholar 

  240. Suzuki, T., Yanagi, K., Ookawa, K., Hatakeyama, K. & Ohshima, N. Flow visualization of microcirculation in solid tumor tissues: intravital microscopic observation of blood circulation by use of a confocal laser scanning microscope. Front. Med. Biol. Eng. 7, 253–263 (1996).

    Google Scholar 

  241. Potter, S. M., Wang, C. M., Garrity, P. A. & Fraser, S. E. Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy. Gene 173, 25–31 (1996).

    Article  Google Scholar 

  242. Bonder, C. S. et al. Rules of recruitment for TH1 and TH2 lymphocytes in inflamed liver: a role for α-4 integrin and vascular adhesion protein-1. Immunity. 23, 153–163 (2005).

    Article  Google Scholar 

  243. Crainiciuc, G. et al. Behavioural immune landscapes of inflammation. Nature 601, 415–421 (2022). This study uses large-scale IVM of leukocytes during inflammation to profile dynamic immune cell behaviour in vivo mirroring orthogonal transcriptomic and proteomic approaches.

    Article  ADS  Google Scholar 

  244. Carvalho-Tavares, J. et al. A role for platelets and endothelial selectins in tumor necrosis factor-α-induced leukocyte recruitment in the brain microvasculature. Circ. Res. 87, 1141–1148 (2000).

    Article  Google Scholar 

  245. Menezes, G. B. et al. Selective down-regulation of neutrophil Mac-1 in endotoxemic hepatic microcirculation via IL-10. J. Immunol. 183, 7557–7568 (2009).

    Article  Google Scholar 

  246. Kreisel, D. et al. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc. Natl Acad. Sci. USA 107, 18073–18078 (2010).

    Article  ADS  Google Scholar 

  247. Lee, W. Y. & Kubes, P. Leukocyte adhesion in the liver: distinct adhesion paradigm from other organs. J. Hepatol. 48, 504–512 (2008).

    Article  Google Scholar 

  248. Zeng, Z. et al. Sex-hormone-driven innate antibodies protect females and infants against EPEC infection. Nat. Immunol. 19, 1100–1111 (2018).

    Article  Google Scholar 

  249. Zeng, Z. et al. CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne Gram-positive bacteria. Cell Host Microbe 20, 99–106 (2016).

    Article  Google Scholar 

  250. Allen, C. D., Okada, T., Tang, H. L. & Cyster, J. G. Imaging of germinal center selection events during affinity maturation. Science 315, 528–531 (2007).

    Article  ADS  Google Scholar 

  251. Phan, T. G., Green, J. A., Gray, E. E., Xu, Y. & Cyster, J. G. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat.Immunol. 10, 786–793 (2009).

    Article  Google Scholar 

  252. Choe, K. et al. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nat. Immunol. 23, 330–340 (2022).

    Article  Google Scholar 

  253. Breart, B. & Bousso, P. S1P 1 downregulation tailors CD8+ T-cell residence time in lymph nodes to the strength of the antigenic stimulation. Eur. J. Immunol. 46, 2730–2736 (2016).

    Article  Google Scholar 

  254. Lammermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).

    Article  ADS  Google Scholar 

  255. Celli, S., Albert, M. L. & Bousso, P. Visualizing the innate and adaptive immune responses underlying allograft rejection by two-photon microscopy. Nat. Med. 17, 744–749 (2011).

    Article  Google Scholar 

  256. Moussion, C. & Girard, J. P. Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 479, 542–546 (2011).

    Article  ADS  Google Scholar 

  257. Lafouresse, F. et al. L-Selectin controls trafficking of chronic lymphocytic leukemia cells in lymph node high endothelial venules in vivo. Blood 126, 1336–1345 (2015).

    Article  Google Scholar 

  258. Asrir, A. et al. Tumor-associated high endothelial venules mediate lymphocyte entry into tumors and predict response to PD-1 plus CTLA-4 combination immunotherapy. Cancer Cell 40, 318–334.e9 (2022).

    Article  Google Scholar 

  259. Sundd, P. et al. Slings enable neutrophil rolling at high shear. Nature 488, 399 (2012).

    Article  ADS  Google Scholar 

  260. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    Article  Google Scholar 

  261. Park, J. et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl Med. 8, 361ra138 (2016).

    Article  Google Scholar 

  262. Neupane, A. S. et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183, 110–125.e11 (2020).

    Article  Google Scholar 

  263. Naumenko, V. et al. Visualizing oncolytic virus–host interactions in live mice using intravital microscopy. Mol. Ther. Oncolytics. 10, 14–27 (2018).

    Article  Google Scholar 

  264. Carestia, A. et al. Modulation of the liver immune microenvironment by the adeno-associated virus serotype 8 gene therapy vector. Mol. Ther. Methods Clin. Dev. 20, 95–108 (2020).

    Article  Google Scholar 

  265. Kim, S. J. et al. Platelet-mediated NET release amplifies coagulopathy and drives lung pathology during severe influenza infection. Front. Immunol. 12, 772859 (2021).

    Article  Google Scholar 

  266. Devi, S. et al. Platelet recruitment to the inflamed glomerulus occurs via an alphaIIbbeta3/GPVI-dependentαIIbβ3/GPVI-dependent pathway. Am. J. Pathol. 177, 1131–1142 (2010).

    Article  Google Scholar 

  267. Lefrancais, E., Mallavia, B., Zhuo, H., Calfee, C. S. & Looney, M. R. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. 3, e98178 (2018).

    Article  Google Scholar 

  268. Riffo-Vasquez, Y. et al. A non-anticoagulant fraction of heparin inhibits leukocyte diapedesis into the lung by an effect on platelets. Am. J. Respir. Cell Mol. Biol. 55, 554–563 (2016).

    Article  Google Scholar 

  269. Guidotti, L. G. et al. Immunosurveillance of the liver by intravascular effector CD8+ T cells. Cell 161, 486–500 (2015).

    Article  Google Scholar 

  270. Surewaard, B. G. J. J. et al. alpha-toxinα-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe 24, 271–284 (2018).

    Article  Google Scholar 

  271. Cazaux, M. et al. Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity. J. Exp. Med. 216, 1038–1049 (2019).

    Article  Google Scholar 

  272. Boulch, M. et al. A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity. Sci. Immunol. 6, eabd4344 (2021).

    Article  Google Scholar 

  273. Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    Article  ADS  Google Scholar 

  274. Xin, T., Gonzalez, D., Rompolas, P. & Greco, V. Flexible fate determination ensures robust differentiation in the hair follicle. Nat. Cell Biol. 20, 1361–1369 (2018).

    Article  Google Scholar 

  275. Mesa, K. R. et al. Homeostatic epidermal stem cell self-renewal is driven by local differentiation. Cell Stem Cell 23, 677–686.e4 (2018).

    Article  Google Scholar 

  276. Azkanaz, M. et al. Retrograde movements determine effective stem cell numbers in the intestine. Nature 607, 548–554 (2022).

    Article  ADS  Google Scholar 

  277. Krndija, D. et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 365, 705–710 (2019).

    Article  ADS  Google Scholar 

  278. Huels, D. J. et al. Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells. Nat. Commun. 9, 1132 (2018).

    Article  ADS  Google Scholar 

  279. Bruens, L. et al. Calorie restriction increases the number of competing stem cells and decreases mutation retention in the intestine. Cell Rep. 32, 107937 (2020).

    Article  Google Scholar 

  280. Van Rheenen, J., Bruens, L., Lotte, B. & Van Rheenen, J. Cellular protection mechanisms that minimise accumulation of mutations in intestinal tissue. Swiss Med. Wkly 147, w14539 (2017).

    Google Scholar 

  281. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

    Article  Google Scholar 

  282. Lo Celso, C. et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457, 92–96 (2009).

    Article  ADS  Google Scholar 

  283. Sipkins, D. A. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435, 969–973 (2005).

    Article  ADS  Google Scholar 

  284. Koechlein, C. S. et al. High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo. Nat. Commun. 7, 12169 (2016).

    Article  ADS  Google Scholar 

  285. Acar, M. et al. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526, 126–130 (2015).

    Article  ADS  Google Scholar 

  286. Chen, J. Y. et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530, 223–227 (2016).

    Article  ADS  Google Scholar 

  287. Bajaj, J. et al. CD98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell 30, 792–805 (2016).

    Article  Google Scholar 

  288. Duarte, D. et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22, 64–77.e6 (2018).

    Article  Google Scholar 

  289. Pirillo, C. et al. Metalloproteinase inhibition reduces AML growth, prevents stem cell loss, and improves chemotherapy effectiveness. Blood Adv. 6, 3126–3141 (2022).

    Article  Google Scholar 

  290. Morimatsu, M. et al. Migration arrest of chemoresistant leukemia cells mediated by MRTF–SRF pathway. Inflamm. Regen. 40, 1–9 (2020).

    Article  Google Scholar 

  291. Hao, X. et al. Metabolic imaging reveals a unique preference of symmetric cell division and homing of leukemia-initiating cells in an endosteal niche. Cell Metab. 29, 950–965.e6 (2019).

    Article  Google Scholar 

  292. Oki, T. et al. Imaging dynamic mTORC1 pathway activity in vivo reveals marked shifts that support time-specific inhibitor therapy in AML. Nat. Commun. 12, 245 (2021).

    Article  Google Scholar 

  293. Khalil, A. A. et al. Collective invasion induced by an autocrine purinergic loop through connexin-43 hemichannels. J. Cell Biol. 219, e201911120 (2020).

    Article  Google Scholar 

  294. Ilina, O. et al. Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22, 1103–1115 (2020).

    Article  Google Scholar 

  295. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 540, 588–592 (2016).

    Article  ADS  Google Scholar 

  296. Sanger, N. et al. Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int. J. Cancer 129, 2522–2526 (2011).

    Article  Google Scholar 

  297. Beerling, E., Oosterom, I., Voest, E., Lolkema, M. & Rheenen, J. Intravital characterization of tumor cell migration in pancreatic cancer. Intravital 5, e1261773 (2016).

    Article  Google Scholar 

  298. Giampieri, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat. Cell Biol. 11, 1287–1296 (2009).

    Article  Google Scholar 

  299. Ilina, O. et al. Intravital microscopy of collective invasion plasticity in breast cancer. Dis. Model. Mech. 11, dmm034330 (2018).

    Article  Google Scholar 

  300. Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K. & Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130, 1147–1154 (2008).

    Article  Google Scholar 

  301. Borriello, L. et al. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat. Commun. 13, 626 (2022). This paper uses serial IVM to track the fate of DTCs in the lung, showing that primary tumour-associated macrophages induce in DTCs a triple-threat phenotype (invasive, stem and dormant) that is carried to the lung and confers to them survival and extravasation advantages.

    Article  ADS  Google Scholar 

  302. Liu, X. et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models. Cancer Discov. 9, 96–113 (2019).

    Article  Google Scholar 

  303. Karagiannis, G. S. et al. Assessing tumor microenvironment of metastasis doorway-mediated vascular permeability associated with cancer cell dissemination using intravital imaging and fixed tissue analysis. J. Vis. Exp. https://doi.org/10.3791/59633 (2019).

    Article  Google Scholar 

  304. Kienast, Y. et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med. 16, 116–122 (2010).

    Article  Google Scholar 

  305. Bagge, U., Skolnik, G. & Ericson, L. E. The arrest of circulating tumor cells in the liver microcirculation: a vital fluorescence microscopic, electron microscopic and isotope study in the rat. J. Cancer Res. Clin. Oncol. 105, 134–140 (1983).

    Article  Google Scholar 

  306. Scherbarth, S. & Orr, F. W. Intravital videomicroscopic evidence for regulation of metastasis by the hepatic microvasculature: effects of interleukin-1α on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res. 57, 4105–4110 (1997).

    Google Scholar 

  307. Padera, T. P. et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296, 1883–1886 (2002).

    Article  ADS  Google Scholar 

  308. Brown, M. et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science 359, 1408–1411 (2018).

    Article  ADS  Google Scholar 

  309. Lei, X., MacKeigan, D. T. & Ni, H. Control of data variations in intravital microscopy thrombosis models. J. Thromb. Haemost. 18, 2823–2825 (2020).

    Article  Google Scholar 

  310. Denis, C. et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc. Natl Acad. Sci. USA 95, 9524–9529 (1998).

    Article  ADS  Google Scholar 

  311. Ni, H. et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J. Clin. Invest. 106, 385–392 (2000).

    Article  Google Scholar 

  312. Ni, H. et al. Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc. Natl Acad. Sci. USA 100, 2415–2419 (2003).

    Article  ADS  Google Scholar 

  313. Wang, Y. et al. Plasma fibronectin supports hemostasis and regulates thrombosis. J. Clin. Invest. 124, 4281–4293 (2014).

    Article  Google Scholar 

  314. Falati, S., Gross, P., Merrill-skoloff, G., Furie, B. C. & Furie, B. Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat. Med. 8, 1175–1180 (2002).

    Article  Google Scholar 

  315. Stalker, T. J. et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 121, 1875–1885 (2013).

    Article  Google Scholar 

  316. Olson, E. S. et al. In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity. Integr. Biol. 4, 595–605 (2012).

    Article  Google Scholar 

  317. Jaffer, F. A., Tung, C. H., Gerszten, R. E. & Weissleder, R. In vivo imaging of thrombin activity in experimental thrombi with thrombin-sensitive near-infrared molecular probe. Arterioscler. Thromb. Vasc. Biol. 22, 1929–1935 (2002).

    Article  Google Scholar 

  318. Campos, J. et al. Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis in mice. Blood Adv. 5, 2319–2324 (2021).

    Article  Google Scholar 

  319. Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887–896 (2010).

    Article  Google Scholar 

  320. von Brühl, M. L. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209, 819–835 (2012).

    Article  Google Scholar 

  321. Xu, X. R. et al. Apolipoprotein A-IV binds αIIbβ3 integrin and inhibits thrombosis. Nat. Commun. 9, 3608 (2018).

    Article  ADS  Google Scholar 

  322. Carestia, A., Davis, R. P., Grosjean, H., Lau, M. W. & Jenne, C. N. Acetylsalicylic acid inhibits intravascular coagulation during Staphylococcus aureus-induced sepsis in mice. Blood 135, 1281–1286 (2020).

    Article  Google Scholar 

  323. Chauhan, A. K. et al. ADAMTS13: a new link between thrombosis and inflammation. J. Exp. Med. 205, 2065–2074 (2008).

    Article  Google Scholar 

  324. Dunn, K. W. et al. Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am. J. Physiol. Cell. Physiol. 283, C905–C916 (2002).

    Article  Google Scholar 

  325. Sandoval, R. M., Kennedy, M. D., Low, P. S. & Molitoris, B. A. Uptake and trafficking of fluorescent conjugates of folic acid in intact kidney determined using intravital two-photon microscopy. Am. J. Physiol. Cell Physiol. 287, C517–C526 (2004).

    Article  Google Scholar 

  326. Russo, L. M. et al. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int. 71, 504–513 (2007).

    Article  Google Scholar 

  327. Russo, L. M., Sandoval, R. M., Brown, D., Molitoris, B. A. & Comper, W. D. Controversies in nephrology: response to ‘renal albumin handling, facts, and artifacts’. Kidney Int. 72, 1195–1197 (2007).

    Article  Google Scholar 

  328. Meyer, K. et al. A Predictive 3D multi-scale model of biliary fluid dynamics in the liver lobule. Cell Syst. 4, 277–290.e9 (2017).

    Article  Google Scholar 

  329. Porat-Shliom, N., Harding, O. J., Malec, L., Narayan, K. & Weigert, R. Mitochondrial populations exhibit differential dynamic responses to increased energy demand during exocytosis in vivo. iScience 11, 440–449 (2019).

    Article  ADS  Google Scholar 

  330. Subramanian, B. C. et al. The LTB4–BLT1 axis regulates actomyosin and β2-integrin dynamics during neutrophil extravasation. J. Cell Biol. 219, e201910215 (2020).

    Article  Google Scholar 

  331. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245–253 (2012).

    Article  Google Scholar 

  332. Kvilekval, K., Fedorov, D., Obara, B., Singh, A. & Manjunath, B. S. Bisque: a platform for bioimage analysis and management. Bioinformatics 26, 544–552 (2010).

    Article  Google Scholar 

  333. Swedlow, J. R. et al. Informatics and quantitative analysis in biological imaging. Science 300, 100–102 (2003).

    Article  ADS  Google Scholar 

  334. Burel, J.-M. et al. Publishing and sharing multi-dimensional image data with OMERO. Mamm. Genome 26, 441–447 (2015).

    Article  Google Scholar 

  335. Hay, J. et al. PyOmeroUpload: a Python toolkit for uploading images and metadata to OMERO. Wellcome Open Res. 5, 96 (2020).

    Article  Google Scholar 

  336. Morita, M. et al. Communication platform for image analysis and sharing in biology. Int. J. Netw. Comput. 4, 369–391 (2014).

    Google Scholar 

  337. Swedlow, J. R. et al. A global view of standards for open image data formats and repositories. Nat. Methods 18, 1440–1446 (2021).

    Article  Google Scholar 

  338. Genzel, L. et al. How the COVID-19 pandemic highlights the necessity of animal research. Curr. Biol. 30, 1014–1018 (2020).

    Article  Google Scholar 

  339. Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017).

    Article  Google Scholar 

  340. Hampson, K. M. et al. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Primers 1, 68 (2021).

    Article  Google Scholar 

  341. Vasquez-Lopez, S. A. et al. Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber. Light Sci. Appl. 7, 1–6 (2018).

    Article  Google Scholar 

  342. Entenberg, D., Roorda, R. D. & Toledo-Crow, R. Non-linear microscope for imaging of the neural systems in live Drosophila. Biomed. Top. Meet. https://doi.org/10.1364/BIO.2004.ThE4 (2004).

    Article  Google Scholar 

  343. Roorda, R. D., Hohl, T. M., Toledo-Crow, R. & Miesenbock, G. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J. Neurophysiol. 92, 609–621 (2004).

    Article  Google Scholar 

  344. Kirkpatrick, N. D. et al. Video-rate resonant scanning multiphoton microscopy: an emerging technique for intravital imaging of the tumor microenvironment. Intravital 1, intv.21557 (2012).

    Article  Google Scholar 

  345. Tsai, P. S. et al. Ultra-large field-of-view two-photon microscopy. Opt. Express 23, 13833–13847 (2015).

    Article  ADS  Google Scholar 

  346. Li, B., Wu, C., Wang, M., Charan, K. & Xu, C. An adaptive excitation source for high-speed multiphoton microscopy. Nat. Methods 17, 163–166 (2020).

    Article  Google Scholar 

  347. Schuck, R. et al. Multiphoton minimal inertia scanning for fast acquisition of neural activity signals. J. Neural. Eng. 15, 025003 (2018).

    Article  ADS  Google Scholar 

  348. Maioli, V. et al. Fast in vivo multiphoton light-sheet microscopy with optimal pulse frequency. Biomed. Opt. Express 11, 6012–6026 (2020).

    Article  Google Scholar 

  349. Hara, K. et al. Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell 14, 658 (2014).

    Article  Google Scholar 

  350. Bornes, L., Windoffer, R., Leube, R. E., Morgner, J. & Van Rheenen, J. Scratch-induced partial skin wounds re-epithelialize by sheets of independently migrating keratinocytes. Life Sci. Alliance 4, e202000765 (2021).

    Article  Google Scholar 

  351. Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179, 1590–1608.e23 (2019). This study presents an ultrafast local volume excitation approach for rapid scanning at up to 15 kHz deep in the brain of awake mice to monitor changes in electrical activity using a genetically encoded voltage sensor.

    Article  Google Scholar 

  352. Ziv, Y. & Ghosh, K. K. Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents. Curr. Opin. Neurobiol. 32, 141–147 (2015).

    Article  Google Scholar 

  353. Chen, S. et al. Miniature fluorescence microscopy for imaging brain activity in freely-behaving animals. Neurosci. Bull. 36, 1182–1190 (2020).

    Article  Google Scholar 

  354. Zong, W. et al. Large-scale two-photon calcium imaging in freely moving mice. Cell 185, 1240–1256.e30 (2022). This work develops a lightweight two-photon miniaturized microscope to allow for almost unrestricted animal movement and behaviour during large-scale IVM deep in the brain.

    Article  Google Scholar 

  355. Khorshed, R. A. et al. Automated identification and localization of hematopoietic stem cells in 3D intravital microscopy data. Stem Cell Rep. 5, 139–153 (2015).

    Article  Google Scholar 

  356. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  Google Scholar 

  357. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  Google Scholar 

  358. Vaghela, R., Arkudas, A., Horch, R. E. & Hessenauer, M. Actually seeing what is going on — intravital microscopy in tissue engineering. Front. Bioeng. Biotechnol. 9, 627462 (2021).

    Article  Google Scholar 

  359. Prunier, C., Chen, N., Ritsma, L. & Vrisekoop, N. Procedures and applications of long-term intravital microscopy. Methods 128, 52–64 (2017).

    Article  Google Scholar 

  360. Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713–719 (2017).

    Article  Google Scholar 

  361. Rosenthal, N. & Brown, S. The mouse ascending: perspectives for human-disease models. Nat. Cell Biol. 9, 993–999 (2007).

    Article  Google Scholar 

  362. Kerr, R. A. Imaging the activity of neurons and muscles. WormBook https://doi.org/10.1895/wormbook.1.113.1 (2006).

    Article  Google Scholar 

  363. Supatto, W., McMahon, A., Fraser, S. E. & Stathopoulos, A. Quantitative imaging of collective cell migration during Drosophila gastrulation: multiphoton microscopy and computational analysis. Nat. Protoc. 4, 1397–1412 (2009).

    Article  Google Scholar 

  364. Abu-Siniyeh, A. & Al-Zyoud, W. Highlights on selected microscopy techniques to study zebrafish developmental biology. Lab. Anim. Res. 36, 12 (2020). This review discusses several of the common non-invasive microscopy techniques that are utilized for investigating zebrafish embryo and larvae in developmental biology.

    Article  Google Scholar 

  365. Benjamin, D. C. & Hynes, R. O. Intravital imaging of metastasis in adult zebrafish. BMC Cancer 17, 660 (2017).

    Article  Google Scholar 

  366. Wrighton, P. J. et al. Quantitative intravital imaging in zebrafish reveals in vivo dynamics of physiological-stress-induced mitophagy. J. Cell Sci. 134, jcs256255 (2021).

    Article  Google Scholar 

  367. Pinto-Teixeira, F. et al. Intravital imaging of hair-cell development and regeneration in the zebrafish. Front. Neuroanat. 7, 33 (2013).

    Article  Google Scholar 

  368. Buckingham, M. E. & Meilhac, S. M. Tracing cells for tracking cell lineage and clonal behavior. Dev. Cell 21, 394–409 (2011).

    Article  Google Scholar 

  369. Yano, S. et al. Spatial-temporal FUCCI imaging of each cell in a tumor demonstrates locational dependence of cell cycle dynamics and chemoresponsiveness. Cell Cycle 13, 2110–2119 (2014).

    Article  Google Scholar 

  370. Wang, Y. et al. Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe. Intravital 5, e1187803 (2016).

    Article  Google Scholar 

  371. Takehara, H. et al. Lab-on-a-brain: implantable micro-optical fluidic devices for neural cell analysis in vivo. Sci. Rep. 4, 6721 (2014).

    Article  Google Scholar 

  372. Williams, J. K. et al. Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging. Intravital 5, e1182271 (2016).

    Article  Google Scholar 

  373. Szulczewski, J. M. et al. In vivo visualization of stromal macrophages via label-free FLIM-based metabolite imaging. Sci. Rep. 6, 25086 (2016).

    Article  ADS  Google Scholar 

  374. Myneni, P., Terekhov, A., Wright, G., Hofmeister, W. & Janetopoulos, C. Intravital microfluidic windows for delivery of chemicals, drugs and probes. Microsc. Microanal. 20, 1352–1353 (2014).

    Article  ADS  Google Scholar 

  375. Deisseroth, K. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. J. Neurosci. 26, 10380–10386 (2006). This seminal article, which coins the term ‘optogenetics’, reviews the (at the time) emerging confluence of optics, genetics and bioengineering for studies of intact neural circuits.

    Article  Google Scholar 

  376. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    Article  ADS  Google Scholar 

  377. Huang, Z. et al. Engineering light-controllable CAR T cells for cancer immunotherapy. Sci. Adv. 6, eaay9209 (2020).

    Article  ADS  Google Scholar 

  378. Benedetti, L. Optogenetic tools for manipulating protein subcellular localization and intracellular signaling at organelle contact sites. Curr Protoc 1, e71 (2021).

    Article  Google Scholar 

  379. Weis, D. & Di Ventura, B. Optogenetic control of nucleocytoplasmic protein transport. Methods Mol. Biol. 2173, 127–136 (2020).

    Article  Google Scholar 

  380. Gasser, C. et al. Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. Proc. Natl Acad. Sci. USA 111, 8803–8808 (2014).

    Article  ADS  Google Scholar 

  381. Rost, B. R., Schneider-Warme, F., Schmitz, D. & Hegemann, P. Optogenetic tools for subcellular applications in neuroscience. Neuron 96, 572–603 (2017).

    Article  Google Scholar 

  382. Joshi, J., Rubart, M. & Zhu, W. Optogenetics: background, methodological advances and potential applications for cardiovascular research and medicine. Front. Bioeng. Biotechnol. 7, 466 (2020). This review article covers the development and use of optogenetic tools in cardiovascular medicine and provides an excellent summary of the different methods for introducing optogenetic tools into cells, including plasmids, adenoviruses and lentiviruses.

    Article  Google Scholar 

  383. Krueger, D. et al. Principles and applications of optogenetics in developmental biology. Development 146, dev175067 (2019).

    Article  Google Scholar 

  384. Haeger, A. et al. Collective cancer invasion forms an integrin-dependent radioresistant niche. J. Exp. Med. 217, e20181184 1(2020).

    Article  Google Scholar 

  385. Graham, M. L. & Prescott, M. J. The multifactorial role of the 3Rs in shifting the harm–benefit analysis in animal models of disease. Eur. J. Pharmacol. 759, 19–29 (2015).

    Article  Google Scholar 

  386. Grimm, H., Olsson, I. A. S. & Sandøe, P. Harm–benefit analysis — what is the added value? A review of alternative strategies for weighing harms and benefits as part of the assessment of animal research. Lab. Anim. 53, 17–27 (2019).

    Article  Google Scholar 

  387. Davies, G. F. et al. Developing a collaborative agenda for humanities and social scientific research on laboratory animal science and welfare. PLoS ONE 11, e0158791 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

C.L.G.J.S. was supported by a European Molecular Biology Organization (EMBO) long-term postdoctoral fellowship (ALTF 1035-2020), a Federation of the European Biochemical Societies (FEBS) excellence award and an Excellence of Science (EOS) grant (project ID: 40007532) of Fonds Wetenschappelijk Onderzoek — Le Fonds de la Recherche Scientifique (FWO-FNRS). P.T. was supported by the Len Ainsworth Fellowship in Pancreatic Cancer Research and is a National Health and Medical Research Council (NHMRC) Senior Research Fellow. D.H. was supported by a Cancer Institute NSW (CINSW) Early Career Research Fellowship. R.W. was supported by the National Institutes of Health (NIH), National Cancer Institute (NCI) Center for Cancer Research Intramural Research Program (ZIA BC 011682). C.N.J. was supported by the Canada Research Chairs Program. P.F. was supported by the NIH U54 CA261694-01 and ERC-2021-ADG 101054921. J.v.R. was supported by the VICI (09150182110004) of ZonMW of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) and the Doctor Josef Steiner Foundation. J.v.R. and P.F. were also funded by the CancerGenomics.nl (Netherlands Organization for Scientific Research) programme. D.E. and M.H.O. are supported by the NCI (CA255153) and The Gruss-Lipper Biophotonics Center and its associated Integrated Imaging Program, and by Jane A. and Myles P. Dempsey.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.L.C., J.v.R, C.L.G.J.S.); Experimentation (P.F., R.W., D.H., P.T., D.E.); Results (D.H., P.T.); Applications (R.W., C.L.C., E.Y., M.I., C.N.J., M.H.O., D.E.); Reproducibility and data deposition (E.Y., M.I., R.W., D.H., P.T.); Limitations and optimizations (R.W., D.H., P.T., C.L.C.); Outlook (C.L.C., J.v.R., C.L.G.J.S., F.L.B.M., D.E., M.H.O.); Overview of the Primer (C.L.G.J.S., J.v.R.).

Corresponding authors

Correspondence to Paul Timpson or Jacco van Rheenen.

Ethics declarations

Competing interests

P.T. receives reagents from Kadmon, InxMed (also consultant), Redx Pharma, Équilibre Biopharmaceuticals and Amplia Therapeutics. Under a licensing agreement between Amplia Therapeutics and Garvan Institute of Medical Research, D.H. and P.T. (consultant) are entitled to milestone payments. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Heyu Ni, Helene Moreau and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Fiji: https://fiji.sc/

ImageJ: https://imagej.nih.gov/ij/

Intravital_Microscopy_Toolbox: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053942

Principles of the 3Rs: https://nc3rs.org.uk/who-we-are/3rs

TAPAS: https://imagej.net/plugins/tapas

Supplementary information

Glossary

Fluorescence lifetime imaging microscopy

(FLIM). An imaging technique capable of assessing the chemical environment of a fluorophore by detecting the characteristic time from excitation to emission for a fluorophore rather than the number of photons emitted.

Intravasation

The entry of a cell or material from tissues into the lumen of a blood or lymph vessel.

Pulse repetition rate

The frequency at which high-energy laser light is emitted, typically 1–2 MHz for low-repetition rate and 80 MHz for high-repetition rate lasers.

Optical parametric oscillators

Femtosecond pulsed light sources capable of emitting light in the range of 1,100–2,000 nm, increasing the wavelength of a pulsed femtosecond laser beyond 1,000 nm.

Group velocity dispersion compensators

Optical devices capable of maintaining the duration of femtosecond light pulses in the presence of dispersive optical elements such as objective lenses.

Optical window

A surgically implantable device that creates an optically clear aperture through which deeper tissues (such as internal organs) may be viewed.

Gradient-index lenses

Very small diameter lenses (~1–2 mm) made of a material of non-uniform index of refraction that can be positioned at physical sites that cannot be accessed by standard lenses.

Quantum yield

The ratio of photons emitted to photons observed, informing on the efficiency of fluorescence emission.

Photon budget

The number of emitted photons per molecule before becoming non-fluorescent, which can depend on the quantum yield and photostability of a fluorophore.

Invadopodia

Plasma membrane protrusions with proteolytic activity to break down extracellular matrix proteins, which can be used by cancer cells to locally invade into adjacent tissues.

Calvarium

The top part of the skull. In the mouse, this includes the frontal bones, with the central suture joining them.

Endosteum

The interface between bone and bone marrow, typically lined by osteoblasts and osteoclasts.

MLL-AF9-driven murine AML

A murine model of poor-prognosis acute myeloid leukaemia (AML). The model can be based on the doxycycline-induced expression of the oncogene MLL-AF9 or on retroviral transduction of MLL-AF9 into haematopoietic progenitor cells. The different variants have some differences, for example, in the expression levels of the oncogene and latency of disease, but all develop into AML.

Acini

A cluster of cells that form a lobed structure that looks similar to a cluster of grapes.

apoA-IV

A plasma protein that shares structural features with other apolipoproteins.

Juxtacrine

Signalling that requires cell–cell or cell–matrix contact.

Surgical engineering

The combination of novel surgical protocols and engineering designs to expose these tissues for short-term and longitudinal microscopic analysis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scheele, C.L.G.J., Herrmann, D., Yamashita, E. et al. Multiphoton intravital microscopy of rodents. Nat Rev Methods Primers 2, 89 (2022). https://doi.org/10.1038/s43586-022-00168-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00168-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing