Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gas-inducible transgene expression in mammalian cells and mice

Abstract

We describe the design and detailed characterization of a gas-inducible transgene control system functional in different mammalian cells, mice and prototype biopharmaceutical manufacturing. The acetaldehyde-inducible AlcR-PalcA transactivator-promoter interaction of the Aspergillus nidulans ethanol-catabolizing regulon1 was engineered for gas-adjustable transgene expression in mammalian cells. Fungal AlcR retained its transactivation characteristics in a variety of mammalian cell lines and reversibly adjusted transgene transcription from chimeric mammalian promoters (PAIR) containing PalcA-derived operators in a gaseous acetaldehyde-dependent manner. Mice implanted with microencapsulated cells engineered for acetaldehyde-inducible regulation (AIR) of the human glycoprotein secreted placental alkaline phosphatase showed adjustable serum phosphatase levels after exposure to different gaseous acetaldehyde concentrations. AIR-controlled interferon-β production in transgenic CHO-K1-derived serum-free suspension cultures could be modulated by fine-tuning inflow and outflow of acetaldehyde-containing gas during standard bioreactor operation. AIR technology could serve as a tool for therapeutic transgene dosing as well as biopharmaceutical manufacturing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular configuration of AIR components.
Figure 2: AIR-adjustable rheostat-like and reversible transgene expression in mammalian cells.
Figure 3: AIR-inducible transgene expression in mice and during bioreactor operation.

Similar content being viewed by others

References

  1. Flipphi, M., Kocialkowska, J. & Felenbok, B. Characteristics of physiological inducers of the ethanol utilization (alc) pathway in Aspergillus nidulans. Biochem. J. 364, 25–31 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Malleret, G. et al. Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104, 675–686 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Aubel, D. et al. Design of a novel mammalian screening system for the detection of bioavailable, non-cytotoxic streptogramin antibiotics. J. Antibiot. (Tokyo) 54, 44–55 (2001).

    Article  CAS  Google Scholar 

  4. Fussenegger, M., Schlatter, S., Datwyler, D., Mazur, X. & Bailey, J.E. Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat. Biotechnol. 16, 468–472 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Boorsma, M. et al. A novel temperature inducible replicon-based DNA expression system. Nat. Biotechnol. 18, 429–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Weikert, S. et al. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 17, 1116–1121 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kramer, B. et al. An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol. 22, 867–870 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Bohl, D., Naffakh, N. & Heard, J.M. Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat. Med. 3, 299–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Fussenegger, M. et al. Streptogramin-based gene regulation systems for mammalian cells. Nat. Biotechnol. 18, 1203–1208 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Weber, W. et al. Macrolide-based transgene control in mammalian cells and mice. Nat. Biotechnol. 20, 901–907 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Rivera, V.M. et al. A humanized system for pharmacologic control of gene expression. Nat. Med. 2, 1028–1032 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Weber, W. et al. Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res. 31, e71 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, X.J., Liefer, K.M., Tsai, S., O'Malley, B.W. & Roop, D.R. Development of gene-switch transgenic mice that inducibly express transforming growth factor beta1 in the epidermis. Proc. Natl. Acad. Sci. USA 96, 8483–8488 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. No, D., Yao, T.P. & Evans, R.M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Neddermann, P. et al. A novel, inducible, eukaryotic gene expression system based on the quorum-sensing transcription factor TraR. EMBO Rep. 4, 159–165 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Favre, D. et al. Lack of an immune response against the tetracycline-dependent transactivator correlates with long-term doxycycline-regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno-associated virus. J. Virol. 76, 11605–11611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dioum, E.M. et al. NPAS2: a gas-responsive transcription factor. Science 298, 2385–2387 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Felenbok, B., Flipphi, M. & Nikolaev, I. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog. Nucleic Acid Res. Mol. Biol. 69, 149–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Berger, J., Hauber, J., Hauber, R., Geiger, R. & Cullen, B.R. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Kramer, B.P., Weber, W. & Fussenegger, M. Artificial regulatory networks and cascades for discrete multilevel transgene control in mammalian cells. Biotechnol. Bioeng. 83, 810–820 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Weber, W., Kramer, B., Fux, C., Keller, B. & Fussenegger, M. Novel promoter/transactivator configurations for macrolide- and streptogramin-responsive transgene expression in mammalian cells. J. Gene Med. 4, 676–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Urlinger, S. et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl. Acad. Sci. USA 97, 7963–7968 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Felenbok, B. et al. The ethanol regulon in Aspergillus nidulans: characterization and sequence of the positive regulatory gene alcR. Gene 73, 385–396 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. Weber, W. et al. Versatile macrolide-responsive mammalian expression vectors for multiregulated multigene metabolic engineering. Biotechnol. Bioeng. 80, 691–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Moser, S. et al. Dual-regulated expression technology: a new era in the adjustment of heterologous gene expression in mammalian cells. J. Gene Med. 3, 529–549 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Mitta, B. et al. Advanced modular self-inactivating lentiviral expression vectors for multigene interventions in mammalian cells and in vivo transduction. Nucleic Acids Res. 30, e113 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schlatter, S., Rimann, M., Kelm, J. & Fussenegger, M. SAMY, a novel mammalian reporter gene derived from Bacillus stearothermophilus alpha-amylase. Gene 282, 19–31 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Béatrice Felenbok for providing p35S-alcR/pUC and pAlcA, Eva Niederer for FACS sorting, Beat P. Kramer, Alessandro Usseglio Viretta and Laetitia Malphettes for critical comments on the manuscript as well as Harvey Bialy for advice. The work was supported by the Swiss National Science Foundation (grant no. 631-065946) and Cistronics Cell Technology (Einsteinstrasse, P.O.B. 145, CH-8093 Zurich, Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fussenegger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Interference studies of acetaldehyde-inducible, macrolide-, streptogramin- and tetracycline-responsive expression systems in CHO-K1 cells (PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, W., Rimann, M., Spielmann, M. et al. Gas-inducible transgene expression in mammalian cells and mice. Nat Biotechnol 22, 1440–1444 (2004). https://doi.org/10.1038/nbt1021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing