Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Elucidation of gene function using C-5 propyne antisense oligonucleotides

Abstract

Identification of human disease-causing genes continues to be an intense area of research. While cloning of genes may lead to diagnostic tests, development of a cure requires an understanding of the gene's function in both normal and diseased cells. Thus, there exists a need for a reproducible and simple method to elucidate gene function. We evaluate C-5 propyne pyrimidine modified phosphorothioate antisense oligonucleotides (ONs) targeted against two human cell cycle proteins that are aberrantly expressed in breast cancer: p34cdc2 kinase and cyclin B1. Dose-dependent, sequence-specific, and gene-specific inhibition of both proteins was achieved at nanomolar concentrations of ONs in normal and breast cancer cells. Precise binding of the antisense ONs to their target RNA was absolutely required for antisense activity. Four or six base-mismatched ONs eliminated antisense activity confirming the sequence specificity of the antisense ONs. Antisense inhibition of p34cdc2 kinase resulted in a significant accumulation of cells in the Gap2/mitosis phase of the cell cycle in normal cells, but caused little effect on cell cycle progression in breast cancer cells. These data demonstrate the potency, specificity, and utility of C-5 propyne modified antisense ONs as biological tools and illustrate the redundancy of cell cycle protein function that can occur in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Milligan, J.F., Matteucci, M.D. and Martin, J.C. 1993. Current concepts in anti-sense drug design. J. Med. Chem. 36: 1923–1937.

    Article  CAS  Google Scholar 

  2. Stein, C.A. and Cheng, Y.-C. 1993. Antisense oligonucleotides as therapeutic agents—is the bullet really magical? Science 261: 1004–1012.

    Article  CAS  Google Scholar 

  3. Wagner, R.W. 1994. Gene inhibition using antisense oligodeoxynucleotides. Nature 372: 333–335.

    Article  CAS  Google Scholar 

  4. Wagner, R.W. 1995. Toward a broad-based antisense technology. Antisense Res. and Dev. 5: 113–114.

    Article  CAS  Google Scholar 

  5. Nurse, P. 1994. Ordering S phase and M phase in the cell cycle. Cell 79: 547–550.

    Article  CAS  Google Scholar 

  6. Sherr, C.J. 1994. G1 phase progression: cycling on cue. Cell 79: 551–555.

    Article  CAS  Google Scholar 

  7. Heichman, K.A. and Roberts, J.M. 1994. Rules to replicate by. Cell 79: 557–562.

    Article  CAS  Google Scholar 

  8. King, R.W., Jackson, P.K. and Kirshner, M.W. 1994. Mitosis in transition. Cell 79: 563–571.

    Article  CAS  Google Scholar 

  9. Norbury, C. and Nurse, P. 1992. Animal cell cycles and their control. Ann. Rev. Biochem. 61: 441–470.

    Article  CAS  Google Scholar 

  10. Pines, J. and Hunter, T. 1990. Isolation of a human cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2 . Cell 58: 833–846.

    Article  Google Scholar 

  11. Kumagai, A. and Dunphy, W.G. 1991. The cdc25 protein controls tyrosine dephos-phorylation of the cdc2 protein in a cell-free system. Cell 64: 903–914.

    Article  CAS  Google Scholar 

  12. Gautier, J., Solomon, M.J., Booher, R.N., Bazan, J.F. and Kirschner, M.W. 1991. Cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2 . Cell 67: 197–211.

    Article  CAS  Google Scholar 

  13. Desai, D., Gu, Y. and Morgan, D.O. 1992. Activation of human cyclin-dependent kinases in vitro. Molec. Biol. Cell 3: 571–582.

    Article  CAS  Google Scholar 

  14. Fisher, T.L., Terhorst, T., Cao, X. and Wagner, R.W. 1993. Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucl. Acids Res. 21: 3857–3865.

    Article  CAS  Google Scholar 

  15. Th'ng, J.P.H., Wright, P.S., Hamaguchi, J., Lee, M.G., Norbury, C.J., Nurse, P. et al. 1990. The FT210 cell line is a mouse G2 phase mutant with a temperature-sensitive CDC2 gene product. Cell 63: 313–324.

    Article  CAS  Google Scholar 

  16. Riabowol, K., Draetta, G., Brizuela, L., Vandre, D. and Beach, D. 1989. The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57: 393–401.

    Article  CAS  Google Scholar 

  17. van den Heuvel, S. and Harlow, E. 1993. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262: 2050–2054.

    Article  CAS  Google Scholar 

  18. Furukawa, Y., Piwnica-Worms, H., Ernst, T.J., Kanakura, Y. and Griffin, J.D. 1990. Cdc2 gene expression at the G1 to S transition in human T lymphocytes. Science 250: 805–808.

    Article  CAS  Google Scholar 

  19. Shaw, J.P., Kent, K., Bird, J., Fishback, J. and Froehler, B. 1991. Modified deoxy-oligonucleotides stable to exonuclease degradation in serum. Nucl. Acids Res. 19: 747–750.

    Article  CAS  Google Scholar 

  20. Welch, P.J. and Wang, J.Y.J. 1992. Coordinated synthesis and degradation of cdc2 in the mammalian cell cycle. Proc. Natl. Acad. Sci. USA 89: 3093–3097.

    Article  CAS  Google Scholar 

  21. Stein, C.A. and Krieg, A.M. 1994. Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides. Antisense Res. Dev. 4: 67–69.

    Article  CAS  Google Scholar 

  22. Mouthon, M.A., Mitjavila, M.T., Marquet, J., Vainchenker, W. and Wendling, F. 1994. Erroneous results of 3H-thymidine incorporation are related to position of thymidine residues in oligodeoxynucleotides. Exp. Hematol. 22: 384–387.

    CAS  PubMed  Google Scholar 

  23. Barton, C.M. and Lemoine, N.R. 1995. Antisense oligonucleotides directed against p53 have antiproliferative effects unrelated to effects on p53 expression. Brit. J. Cancer 71: 429–437.

    Article  CAS  Google Scholar 

  24. Krieg, A.M., Yi, A.K., Matson, S., Waldschmidt, T.J., Bishop, G.A., Teasdale, R. et al. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549.

    Article  CAS  Google Scholar 

  25. Morishita, R., Gibbons, G.H., Ellison, K.E., Nakajima, M., von der Leyen, H., Zhang, L., et al. 1994. Intimal hyperplasia after vascular injury is inhibited by anti-sense cdk 2 kinase oligonucleotides. J. Clin. Invest. 93: 1458–1464.

    Article  CAS  Google Scholar 

  26. Morishita, R., Gibbons, G.H., Ellison, K.E., Nakajima, M., Zhang, L., Kaneda, Y. et al. 1993. Single intraluminal delivery of antisense cdc2 kinase and proliferat-ing-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl. Acad. Sci. USA 90: 8474–8478.

    Article  CAS  Google Scholar 

  27. Vesely, J., Havlicek, L., Stinad, M., Blow, J., Donnela-Deana, A., Pinna, L. et al. 1994. Inhibition of cyclin-dependent kinases by purine analogues. Eur. J. Biochem. 224: 771–786.

    Article  CAS  Google Scholar 

  28. Hanvey, J.C., Peffer, N.J., Bisi, J.E., Thomason, S.A., Cadilla, R., Josey, J.A. et al. 1992. Antisense and antigene properties of peptide nucleic acids. Science 258: 1481–1485.

    Article  CAS  Google Scholar 

  29. Wagner, R.W., Matteucci, M.D., Lewis, J.G., Gutierrez, A.J., Moulds, C. and Froehler, B.C. 1993. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science 260: 1510–1513.

    Article  CAS  Google Scholar 

  30. Bennett, C.F., Chiang, M.Y., Chan, H., Shoemaker, J.E. and Mirabelli, C.K. 1992. Cationic lipids enhance cellular uptake and activity of phosphorothioate anti-sense oligonucleotides. Mol. Pharmacol. 41: 1023–1033.

    CAS  Google Scholar 

  31. Capaccioli, S., Di Pasquale, G., Mini, E., Mazzei, T. and Quattrone, A. 1993. Cationic lipids improve antisense oligonucleotide uptake and prevent degradation in cultured cells and in human serum. Biochem. Biophys. Res. Commun. 197: 818–825.

    Article  CAS  Google Scholar 

  32. Lewis, J.G., Lin, K.Y., Kothavale, A., Flanagan, W.M., Matteucci, M.D., DePrince, R.B. et al. 1996. A serum-resistant cytofectin for cellular delivery of antisense oligonucleotides and plasmid DNA. Proc. Natl. Acad. Sci. USA 93: 1112–1116.

    Google Scholar 

  33. Moulds, C., Lewis, J.G., Froehler, B.C., Grant, D., Huang, T., Milligan, J.F. et al. 1995. Site and mechanism of antisense inhibition by C-5 propyne oligonucleotides. Biochemistry 34: 5044–5053.

    Article  CAS  Google Scholar 

  34. Ohtsubo, M. and Roberts, J.M. 1993. Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259: 1908–1912.

    Article  CAS  Google Scholar 

  35. Koff, A., Giordano, A., Desai, D., Yamashita, K., Harper, J.W., Elledge, S. et al. 1992. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257: 1689–1694.

    Article  CAS  Google Scholar 

  36. Norbury, C., Blow, J. and Nurse, P. 1991. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J. 10: 3321–3329.

    Article  CAS  Google Scholar 

  37. Solomon, M.J., Lee, T. and Kirschner, M.W. 1992. Role of phosphorylation in p34cdc2 activation: Identification of an activating kinase. Mol. Biol. Cell 3: 13–27.

    Article  CAS  Google Scholar 

  38. Fenster, S.D., Wagner, R.W., Froehler, B.C. and Chin, D.J. 1994. Inhibition of Human Immunodeficiency Virus type-1 env expression by C-5 propyne oligonucleotides specific for Rev Response element stem loop V. Biochemistry 33: 8391–8398.

    Article  CAS  Google Scholar 

  39. Bennett, C.F., Condon, T.R., Grimm, S., Chan, H. and Chiang, M-Y. 1994. Inhibition of endothelial cell adhesion molecule expression with antisense oligonucleotides. J. Immunol. 152: 3530–3540.

    CAS  PubMed  Google Scholar 

  40. Monia, B.P., Johnston, J.F., Ecker, D.J., Zounes, M.A., Lima, W.F. and Freier, S.M. 1992. Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J. Biol. Chem. 267: 19954–19962.

    CAS  Google Scholar 

  41. Duroux, I., Godard, G., Boidot-Forget, M., Schwab, G., Helene, C. and Saison-Behmoaras, T. 1995. Rational design of point mutation-selective antisense DNA targeted to codon 12 of Ha-ras mRNA in human cells. Nucl. Acids Res. 23: 3411–3418.

    Article  CAS  Google Scholar 

  42. Wagner, R.W., Matteucci, M.D., Grant, D., Huang, T. and Froehler, B.C. 1996. Potent and selective inhibition of gene expression by an antisense heptanucleotide. Nature Biotechnology 14: 840–844.

    Article  CAS  Google Scholar 

  43. Monia, B.P., Lesnik, E.A., Gonzalez, C., Lima, W.F., McGee, D., Guinosso, C.J. et al. 1993. Evaulation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268: 14514–14522.

    CAS  Google Scholar 

  44. Larrouy, B., Boiziau, C., Sprout, B. and Toulme, J.J. 1995. RNase H is responsible for the non-specific inhibition of in vitro translation by 2′-O-alkyl chimeric oligonucleotides: high affinity or selectivity, a dilemma to design antisense oligomers. Nucleic Acids Res. 23: 3434–3440.

    Article  CAS  Google Scholar 

  45. Giles, R.V., Ruddell, C.J., Spiller, D.G., Green, J.A. and Tidd, D.M. 1995. Single base discrimination for ribonuclease H-dependent antisense effects within intact human leukaemia cells. Nucleic Acids Res. 23: 954–961.

    Article  CAS  Google Scholar 

  46. Keyomarsi, K. and Pardee, A.B. 1993. Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc. Natl. Acad. Sci. USA 90: 1112–1116.

    Article  CAS  Google Scholar 

  47. Hartwell, L.H. and Kastan, M.B. 1994. Cell cycle control and cancer. Science 266: 1821–1828.

    Article  CAS  Google Scholar 

  48. Froehler, B.C. 1993. Protocols for oligonucleotides and analogs: synthesis and properties. Humana, Totowa, NJ.

    Google Scholar 

  49. Froehler, B.C., Wadwani, S., Terhorst, T.J. and Gerrard, S.R. 1992. Oligodeoxynucleotides ontaining C-5 propyne analogs of 2′-deoxyuridine and 2′-deoxycytidine. Tetrahedron Lett. 33: 5307–5310.

    Article  CAS  Google Scholar 

  50. Froehler, B.C., Jones, R.J., Cao, X. and Terhorst, T.J. 1993. Oligonucleotides derived from 5-(1-propynyl)-2′-O-allyl-uridine and 5-(1-propynyl)-2′-O-allyl-cytidine: synthesis and RNA duplex formation. Tetrahedron Lett. 34: 1003–1006.

    Article  CAS  Google Scholar 

  51. Bram, R.J., Hung, D.T., Martin, P.K., Schreiber, S.L. and Crabtree, G.R. 1993. Identification of the immunophilins capable of mediating inhibition of signal transduction by cyclosporin A and FK506: roles of calcineurin binding and cellular location. Mol. Cell. Biol. 13: 4760–4769.

    Article  CAS  Google Scholar 

  52. Jackman, M., Firth, M. and Pines, J. 1995. Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. EMBO J. 14: 1646–1654.

    Article  CAS  Google Scholar 

  53. Ausubel, P.M., Brent, R., Kingston, R.E., Morre, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (eds.). 1989. Current protocols in molecular biology. John Wiley and Sons, New York.

    Google Scholar 

  54. Quelle, D.E., Ashmun, R.A., Shurtleff, S.A., Kato, J.-Y., Bar-Sagi, D., Roussel, M.F. et al. 1993. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 7: 1559–1571.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flanagan, W., Su, L. & Wagner, R. Elucidation of gene function using C-5 propyne antisense oligonucleotides. Nat Biotechnol 14, 1139–1145 (1996). https://doi.org/10.1038/nbt0996-1139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0996-1139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing