Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Computer-assisted rational design of immunosuppressive compounds

Abstract

We describe the rational design of immunosuppressive peptides without relying on information regarding their receptors or mechanisms of action. The design strategy uses a variety of topological and shape descriptors in combination with an analysis of molecular dynamics trajectories for the identification of potential drug candidates. This strategy was applied to the development of immunosuppressive peptides with enhanced potency. The lead compounds were peptides, derived from the heavy chain of HLA class I, that modulate immune responses in vitro and in vivo. In particular, a peptide derived from HLA-B2702, amino acids 75–84 (2702.75–84) prolonged skin and heart allograft survival in mice. The biological activity of the rationally designed peptides was tested in a heterotopic mouse heart allograft model. The molecule predicted to be most potent displayed an immunosuppressive activity approximately 100 times higher than the lead compound.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Good, A., So, S. and Richards, W.G. 1993. Structure-activity relationships from molecular similarity matrices. J. Med. Chem. 36: 433–437.

    Article  CAS  Google Scholar 

  2. Hyde, R. and Livingstone, D. 1988. Perspectives in QSAR: computer chemistry and pattern recognition. J. Comput. Aided Mol. Des. 2: 145–151.

    Article  CAS  Google Scholar 

  3. Wiener, H. 1947. Correlation of heats of isomerization and differences in heats of vaporization of isomers, among the paraffin hydrocarbons. J. Am. Chem. Soc. 69: 2636–2642.

    Article  CAS  Google Scholar 

  4. Mihalic, Z. and Trinajstic, N. 1992. A graph-theoretical approach to structure-property relationships. J. Ed. Chem. 69: 701–705.

    Article  CAS  Google Scholar 

  5. Nikolovska-Coleska, Z., Sutrkova, L., Dorevski, K., Krbavcic, A. and Solmajer, T. 1998. Quantitative structure activity relationship of flavonoid inhibitors of p56kk protein tyrosyne kinase: a classical/quantum chemical approach. Quant. Struct.Act. Relat. 17: 20–26.

    Article  Google Scholar 

  6. Seydel, J., Cordes, H.P., Albores-Velasco, M., Visser, K. and Wiese, M. 1993. Methods and parameters to describe drug membrane interaction and their use in QSAR, pp. 120–123 in Trends in QSAR and Molecular modelling 92, Wermuth, C.G. (ed.). ESCOM Publishers, Leiden, Netherlands.

    Chapter  Google Scholar 

  7. Hatch, K. and Magee, P. 1998. A discriminant model for allergic contact dermatitis in anthraquinone disperse dyes. Quant. Struct. Act fie/at 17: 7–13.

    Article  Google Scholar 

  8. Devillers, J. and Domine, D. 1994. Deriving structure-chemoreception relationships from the combined use of linear and non-linear multivariate analyses, 57–60 in QSAR and molecular modelling: concepts, computational tools, and biological applications, Sanz, R, Giraldo, J., and Manuat, F. (eds.). Prous Science Publishers, Barcelona.

    Google Scholar 

  9. Grassy, G., Trape, P., Bompart, J., Calas, B. and Auzou, G. 1995. Variable mapping of structure activity relationships. Application to 17-Spirolactone derivatives with mineralocorticoid activity. J. Mol. Graphics 13: 356–367.

    Article  CAS  Google Scholar 

  10. Clayberger, C., Lyu, S.C., Pouletry, P., and Krensky, A.M. 1993. Peptides corresponding to T-cell receptor-HLA contact regions inhibit class l-restricted Immune responses. Transplant Proc. 25: 477–478.

    CAS  PubMed  Google Scholar 

  11. Nisco, S., Vriens, P., Hoyt, G., Lyu, S.C., R, Pouletry, P. et al. 1994. Induction of allograft tolerance in rats by an HLA class-l-derived peptides and cyclosporine A. J. Immunol. 152: 3786–3792.

    CAS  PubMed  Google Scholar 

  12. Cuturi, M.C., Josien, R., Douillard, P., Pannetier, C., Cantarovitch, D., Smit, H. et al. 1995. Prolongation of allogeneic heart graft survival in rats by administration of a peptide (a.a 75–84) from the a1 helix of the first domain of HLA-B701. Transplantation 59: 661–669.

    Article  CAS  Google Scholar 

  13. Gao, L., Woo, J. and Buelow, R. 1996. Both L- and D-isomers of HLA class I heavy chain derived peptides prolong heart allograft survival in mice. Heart and Lung Transplantation 15: 78–87.

    CAS  Google Scholar 

  14. Noessner, E., Goldberg, J.E., Naftzger, C., Lyu, S.C., Clayberger, C. and Krensky, A.M. 1996. HLA-derived peptides which inhibit T-cell function bind to members of the heat shock protein 70 family. J. Exp. Med. 183: 339–348.

    Article  CAS  Google Scholar 

  15. Buelow, R., Veyron, P., Clayberger, C., Pouletry, P. and Touraine, J.L. 1995. Prolongation of skin allograft survival in mice following administration of allotrap. Transplantation 59: 455–460.

    Article  CAS  Google Scholar 

  16. Woo, J., Iyer, S., Cornejo, M.C., Gao, L., Cuturi, C., Soulillou, J.R. and Buelow, R. 1997. Immunosuppression by HLA class I heavy chain (amino acid 75 to 84). derived peptides is independent of binding to Hsc70. Transplantation 64: 1460–1467.

    Article  CAS  Google Scholar 

  17. Giral, M., Cuturi, M.C., N'guyen, J.M., Josien, R., Dantal, J., Floc'h, R. et al. 1997. Decreased cytotoxic activity of natural killer cells in kidney allograft recipients treated with human HLA-derived peptide. Transplantation 63: 1004–1011.

    Article  CAS  Google Scholar 

  18. Buelow, R., Burlingham, W.H. and Clayberger, C. 1995. Immunomodulation by soluble HLA Class I. Transplantation 59: 649–654.

    Article  CAS  Google Scholar 

  19. Ghose, A. and Crippen, G.M. 1986. Physicochemical parameters for three dimensional structure-directed quantitative structure-activity relationships. I. Partition coefficient as a measure of hydrophobicity. J. Comput. Chem., 7: 565–677.

    Article  CAS  Google Scholar 

  20. Balaban, A.T. 1982. Highly discriminating distance-based topological index. Chem. Phys. Lett. 89: 399–402.

    Article  CAS  Google Scholar 

  21. See for instance, Hall, L.H. and Kier, L.B. 1992. The molecular connectivity chi indexes and kappa shape indexes in structure-property modeling. Reviews in Computational Chemistry Ed. K.B. Lipkowitz and D.B. Boyd and references herein.

    Google Scholar 

  22. Iyer, S., Woo, J., Cornejo, M.C., Gao, L., McCoubrey, W., Maines, M. and Buelow, R. 1998. Characterization and biological significance of immunosup-pressive peptide D2702. 75-84 (EV) binding protein: isolation of heme oxyge-nase. J. Biol. Chem. 273: 2692–2697.

    Article  CAS  Google Scholar 

  23. Woo, J., Iyer, S., Comejo, M.C., Mori, N., Gao, L. and Buelow, R. 1998. Stress induced immunosuppression: inhibition of cellular immune effector functions following overexpression of heat shock protein 32. Transplantation Immunology. In press.

  24. Willis, D., Moore, A.R., Frederick, R. and Willoughby, D.A. 1996. Heme oxygenase: A novel target for the modulation of the inflammatory response. Nat. Medicine 2: 87–90.

    Article  CAS  Google Scholar 

  25. Laniado-Schwartzmann, M., Abraham, N.G., Conners, M., Dunn, M.W., Levere, R.D. and Kappas, A. 1997. Heme oxygenase induction with attenuation of experimentally induced corneal inflammation. Biochem. Pharmacol. 53: 1069–1075.

    Article  Google Scholar 

  26. Ono, K. and Lindsey, E.S. 1969. Improved technique of heart transplantation in rats. J. Thorac. Cardiovasc. Surg. 7: 225–229.

    Google Scholar 

  27. Broto, P., Moreau, G. and Van Dycke, C. 1984. Molecular structures: perception, autocorrelation descriptor and SAR studies. Eur. J. Med. Chem.-Chim. Theor. 19: 61–70.

    CAS  Google Scholar 

  28. Grassy, G. and Lahana, R. 1993. Statistical analyses and shape recognition. Applications to molecular dynamics simulations, conformational analyses and structure-activity relationships, pp. 216–219 in Trends in QSAR and Molecular modelling 92 ESCOM Publishers.

    Chapter  Google Scholar 

  29. Yasri, A., Chiche, L., Haiech, J. and Grassy, G. 1996. Rational choice of molecular dynamics simulation parameters through the use of conformational autocorrelation 3-D method. Application to calmoduline flexibility study. Protein Engineering 9: 959–976.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassy, G., Calas, B., Yasri, A. et al. Computer-assisted rational design of immunosuppressive compounds. Nat Biotechnol 16, 748–752 (1998). https://doi.org/10.1038/nbt0898-748

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0898-748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing