Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical synthesis as a discovery platform in immunosuppression and determination of mode of action

Abstract

Over the past century, the use of organ transplantation to replace malfunctioning tissue has leapt from an impossibility to being a routine procedure. This development has hinged on the use of immunosuppressive agents, which prevent rejection of the transplanted tissue. The most potent immunosuppressive drugs employed today are natural products and derivatives thereof, whose discovery, elucidation of mode of action, and introduction into clinical use have been enabled by chemical synthesis. However, more recently, research focusing on immunosuppressive natural products has not been able to identify novel scaffolds for clinical use. Here we discuss examples of immunosuppressive natural products in clinical use, explore how synthesis has contributed to our understanding of the mode of action as well as fundamental biology, and how synthetic chemistry could provide a means for future developments in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Important immunosuppressive natural products and their natural sources.
Fig. 2: The total synthesis of rapamycin (4) developed by Schreiber and colleagues23.
Fig. 3: The total synthesis of pateamine A (28), via Ir-catalysed asymmetric allylation and Stille coupling to introduce the side chain, by Fürstner and colleagues44.
Fig. 4: The total synthesis of sanglifehrin A (29), via regioselective Stille macrocyclization and intermolecular Stille coupling, by Nicolaou and colleagues53,54.
Fig. 5: The racemic and asymmetric total synthesis of phainanoid A (37) by Dong and colleagues74,75.
Fig. 6: Abbreviated synthetic sequence of the asymmetric total synthesis of (−)-isoscopariusin A (52) and total synthesis of FR252921 (57), featuring key results of SAR studies.

Similar content being viewed by others

References

  1. Delves, P. J. & Roitt, I. M. The immune system. N. Engl. J. Med. 343, 37–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Parkin, J. & Cohen, B. An overview of the immune system. Lancet 357, 1777–1789 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Chinen, J. & Buckley, R. H. Transplantation immunology: solid organ and bone marrow. J. Allergy Clin. Immunol. 125, S324–S335 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marrack, P., Kappler, J. & Kotzin, B. L. Autoimmune disease: why and where it occurs. Nat. Med. 7, 899–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Kahan, B. D. Individuality: the barrier to optimal immunosuppression. Nat. Rev. Immunol. 3, 831–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Elenkov, I. J. Glucocorticoids and the Th1/Th2 balance. Ann. N. Y. Acad. Sci. 1024, 138–146 (2004).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Boumpas, D. T., Chrousos, G. P., Wilder, R. L., Cupps, T. R. & Balow, J. E. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann. Intern. Med. 119, 1198–1208 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Abbas, A. K., Lichtman, A. H. & Pillai, S. Cellular and Molecular Immunology (Elsevier, 2012).

  9. Kahan, B. D. Forty years of publication of transplantation proceedings—the second decade: the cyclosporine revolution. Transplant. Proc. 41, 1423–1437 (2009).

    Article  PubMed  Google Scholar 

  10. Borel, J. F., Feurer, C., Gubler, H. U. & Stähelin, H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6, 468–475 (1976).

    Article  CAS  PubMed  Google Scholar 

  11. Kino, T. et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation and physico-chemical and biological characteristics. J. Antibiot. 40, 1249–1255 (1987).

    Article  CAS  Google Scholar 

  12. Matsuda, S. & Koyasu, S. Mechanism of action of cyclosporin. Immunopharmacology 47, 119–125 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Wenger, R. M. Synthesis of cyclosporine. Helv. Chim. Acta 67, 502–526 (1984).

    Article  CAS  Google Scholar 

  14. Wu, X., Stockdill, J. L., Wang, P. & Danishefsky, S. J. Total synthesis of cyclosporine: access to N-methylated peptides via isonitrile coupling reactions. J. Am. Chem. Soc. 132, 4098–4100 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakatsuka, M. et al. Total synthesis of FK506 and an FKBP probe reagent, (C8,C9-13C2)-FK506. J. Am. Chem. Soc. 112, 5583–5601 (1990).

    Article  CAS  Google Scholar 

  16. Jones, T. K. et al. Total synthesis of the immunosuppressant (−)-FK-506. J. Am. Chem. Soc. 111, 1157–1159 (1989).

    Article  CAS  Google Scholar 

  17. Ireland, R. E., Gleason, J. L., Gegnas, L. D. & Highsmith, T. K. A total synthesis of FK-506. J. Org. Chem. 61, 6856–6872 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Schreiber, S. L. The rise of molecular glues. Cell 184, 3–9 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Vézina, C. & Kudelski, A. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28, 721–726 (1975).

    Article  Google Scholar 

  20. Sehgal, S. N., Baker, H. & Vézina, C. Rapamycin (Ay-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. Antibiot. 28, 727–732 (1975).

    Article  CAS  Google Scholar 

  21. Martel, R. R., Klicius, J. & Galet, S. Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can. J. Physiol. Pharmacol. 55, 48–51 (1977).

    Article  CAS  PubMed  Google Scholar 

  22. Sehgal, S. N., MolnarKimber, K., Ocain, T. D. & Weichman, B. M. Rapamycin: a novel immunosuppressive macrolide. Med. Res. Rev. 14, 1–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Romo, D., Meyer, S. D., Johnson, D. D. & Schreiber, S. L. Total synthesis of (−)-rapamycin using an Evans-Tishchenko fragment coupling. J. Am. Chem. Soc. 115, 7906–7907 (1993).

    Article  CAS  Google Scholar 

  24. Meyer, S. D., Miwa, T., Nakatsuka, M. & Schreiber, S. L. Synthetic investigations of rapamycin. 1. Synthesis of a C10-C21 fragment. J. Org. Chem. 57, 5058–5060 (1992).

    Article  CAS  Google Scholar 

  25. Romo, D., Johnson, D. D., Plamondon, L., Miwa, T. & Schreiber, S. L. Synthetic investigations of rapamycin. 2. Synthesis of a C22-C42 fragment. J. Org. Chem. 57, 5060–5063 (1992).

    Article  CAS  Google Scholar 

  26. Nicolaou, K. C., Chakraborty, T. K., Piscopio, A. D., Minowa, N. & Bertinato, P. Total synthesis of rapamycin. J. Am. Chem. Soc. 115, 4419–4420 (1993).

    Article  CAS  Google Scholar 

  27. Hayward, C. M., Yohannes, D. & Danishefsky, S. J. Total synthesis of rapamycin via a novel titanium-mediated aldol macrocyclization reaction. J. Am. Chem. Soc. 115, 9345–9346 (1993).

    Article  CAS  Google Scholar 

  28. Smith, A. B. III et al. Total synthesis of rapamycin and demethoxyrapamycin. J. Am. Chem. Soc. 117, 5407–5408 (1995).

    Article  CAS  Google Scholar 

  29. Smith, A. B. et al. A unified total synthesis of the immunomodulators (−)-rapamycin and (−)-27-demethoxyrapamycin: assembly of the common C1–20 perimeter and final elaboration. J. Am. Chem. Soc. 119, 962–973 (1997).

    Article  CAS  Google Scholar 

  30. Maddess, M. L. et al. Total synthesis of rapamycin. Angew. Chem. Int. Ed. 46, 591–597 (2007).

    Article  CAS  Google Scholar 

  31. Ley, S. V. et al. Total synthesis of rapamycin. Chem. A Eur. J. 15, 2874–2914 (2009).

  32. Saridakis, I., Kaiser, D. & Maulide, N. Unconventional macrocyclizations in natural product synthesis. ACS Central Sci. 6, 1869–1889 (2020).

    Article  CAS  Google Scholar 

  33. De Lima, C., Julia, M. & Verpeaux, J.-N. Reaction of α-sulfonyl carbanions with electrophilic monohalogenocarbenoids: a new Wittig-like formation of alkenes. Synlett 1992, 133–134 (1992).

    Article  Google Scholar 

  34. Batchelor, M. J., Gillespie, R. J., Golec, J. M. C. & Hedgecock, C. J. R. A novel application of the Dess-Martin reagent to the synthesis of an FK506 analogue and other tricarbonyl compounds. Tetrahedron Lett. 34, 167–170 (1993).

    Article  CAS  Google Scholar 

  35. Magnuson, B., Ekim, B. & Fingar, D. C. Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem. J. 441, 1–21 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin–receptor complex. Nature 369, 756–758 (1994).

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Park, S. R., Yoo, Y. J., Ban, Y. H. & Yoon, Y. J. Biosynthesis of rapamycin and its regulation: past achievements and recent progress. J. Antibiot. 63, 434–441 (2010).

    Article  CAS  Google Scholar 

  38. Morath, C. et al. Sirolimus in renal transplantation. Nephrol. Dial. Transplant. 22, 61–65 (2007).

    Article  Google Scholar 

  39. Augustine, J. J., Bodziak, K. A. & Hricik, D. E. Use of sirolimus in solid organ transplantation. Drugs 67, 369–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Wali, R. K. & Weir, M. R. Chronic allograft dysfunction: can we use mammalian target of rapamycin inhibitors to replace calcineurin inhibitors to preserve graft function? Curr. Opin. Organ Transplant. 13, 614–621 (2008).

    Article  PubMed  Google Scholar 

  41. Romo, D. et al. Total synthesis and immunosuppressive activity of (−)-pateamine A and related compounds: implementation of a β-lactam-based macrocyclization. J. Am. Chem. Soc. 120, 12237–12254 (1998).

    Article  CAS  Google Scholar 

  42. Rzasa, R. M., Romo, D., Stirling, D. J., Blunt, J. W. & Munro, M. H. G. Structural and synthetic studies of the pateamines: synthesis and absolute configuration of the hydroxydienoate fragment. Tetrahedron Lett. 36, 5307–5310 (1995).

    Article  CAS  Google Scholar 

  43. Remuiñán, M. J. & Pattenden, G. Total synthesis of (−)-pateamine, a novel polyene bis-macrolide with immunosuppressive activity from the sponge Mycale sp. Tetrahedron Lett. 41, 7367–7371 (2000).

    Article  Google Scholar 

  44. Zhuo, C.-X. & Fürstner, A. Catalysis-based total syntheses of pateamine A and DMDA-Pat A. J. Am. Chem. Soc. 140, 10514–10523 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Romo, D. et al. Evidence for separate binding and scaffolding domains in the immunosuppressive and antitumor marine natural product, pateamine A: design, synthesis and activity studies leading to a potent simplified derivative. J. Am. Chem. Soc. 126, 10582–10588 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Bordeleau, M.-E. et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc. Natl Acad. Sci. USA 102, 10460–10465 (2005).

  47. Bordeleau, M.-E. et al. RNA-mediated sequestration of the RNA helicase eIF4A by pateamine A inhibits translation initiation. Chem. Biol. 13, 1287–1295 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Low, W.-K. et al. Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents. Bioorg. Med. Chem. 22, 116–125 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Pelletier, J., Graff, J., Ruggero, D. & Sonenberg, N. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res. 75, 250–263 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanglier, J.-J. et al. Sanglifehrins A, B, C and D, novel cyclophilin-binding compounds isolated from Streptomyces sp. A92-308110. I. Taxonomy, fermentation, isolation and biological activity. J. Antibiot. 52, 466–473 (1999).

    Article  CAS  Google Scholar 

  51. Fehr, T., Kallen, J., Oberer, L., Sanglier, J. J. & Schilling, W. Sanglifehrins A, B, C and D, novel cyclophilin-binding compounds isolated from Streptomyces sp. A92-308110. II. Structure elucidation, stereochemistry and physico-chemical properties. J. Antibiot. 52, 474–479 (1999).

    Article  CAS  Google Scholar 

  52. Zenke, G. et al. Sanglifehrin A, a novel cyclophilin-binding compound showing immunosuppressive activity with a new mechanism of action. J. Immunol. 166, 7165–7171 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Nicolaou, K. C. et al. Total synthesis of sanglifehrin A. Angew. Chem. Int. Ed. 38, 2447–2451 (1999).

    Article  CAS  Google Scholar 

  54. Nicolaou, K. C. et al. Total synthesis of the novel immunosuppressant sanglifehrin A. J. Am. Chem. Soc. 122, 3830–3838 (2000).

    Article  CAS  Google Scholar 

  55. Paquette, L. A., Konetzki, I. & Duan, M. Synthesis of the tripeptide (C1–N12) and hydroxylated hexadecene (C26–C41) domains of sanglifehrin A and C. Tetrahedron Lett. 40, 7441–7444 (1999).

    Article  CAS  Google Scholar 

  56. Duan, M. & Paquette, L. A. Highly diastereocontrolled synthesis of the C1–C25 domain of sanglifehrin A. Tetrahedron Lett. 41, 3789–3792 (2000).

    Article  CAS  Google Scholar 

  57. Paquette, L. A., Duan, M., Konetzki, I. & Kempmann, C. A convergent three-component total synthesis of the powerful immunosuppressant (−)-sanglifehrin A. J. Am. Chem. Soc. 124, 4257–4270 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Bänteli, R., Brun, I., Hall, P. & Metternich, R. A synthesis of the C1-12 tripeptide fragment of sanglifehrin A. Tetrahedron Lett. 40, 2109–2112 (1999).

    Article  Google Scholar 

  59. Hall, P., Brun, J., Denni, D. & Metternich, R. A stereoselective synthesis of the C13-C19 fragment of sanglifehrin A. Synlett 2000, 315–318 (2000).

    Article  Google Scholar 

  60. Gurjar, M. K. & Chaudhuri, S. R. A stereoselective synthesis of the C13-C19 fragment of sanglifehrin A. Tetrahedron Lett. 43, 2435–2438 (2002).

    Article  CAS  Google Scholar 

  61. Chang, C.-F., Flaxman, H. A. & Woo, C. M. Enantioselective synthesis and biological evaluation of sanglifehrin A and B and analogs. Angew. Chem. Int. Ed. 60, 17045–17052 (2021).

    Article  CAS  Google Scholar 

  62. Nicolaou, K. C. et al. Total synthesis of epothilone E and related side-chain modified analogues via a Stille coupling based strategy. Bioorg. Med. Chem. 7, 665–697 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Menche, D., Hassfeld, J., Li, J., Mayer, K. & Rudolph, S. Modular total synthesis of archazolid A and B. J. Org. Chem. 74, 7220–7229 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, L. H. & Liu, J. O. Sanglifehrin A, a novel cyclophilin-binding immunosuppressant, inhibits IL-2-dependent T cell proliferation at the G1 phase of the cell cycle. J. Immunol. 166, 5611–5618 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Zhang, L. H., Youn, H. D. & Liu, J. O. Inhibition of cell cycle progression by the novel cyclophilin ligand sanglifehrin A is mediated through the NFκB-dependent activation of p53. J. Biol. Chem. 276, 43534–43540 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Steinschulte, C., Taner, T., Thomson, A. W., Bein, G. & Hackstein, H. Cutting edge: sanglifehrin A, a novel cyclophilin-binding immunosuppressant blocks bioactive IL-12 production by human dendritic cells. J. Immunol. 171, 542–546 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Sedrani, R. et al. Sanglifehrin-cyclophilin interaction: degradation work, synthetic macrocyclic analogues, X-ray crystal structure, and binding data. J. Am. Chem. Soc. 125, 3849–3859 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Schiene-Fischer, C., Fischer, G. & Braun, M. Non-immunosuppressive cyclophilin inhibitors. Angew. Chem. Int. Ed. 26, e202201597 (2022).

    ADS  Google Scholar 

  69. Steadman, V. A. et al. Discovery of potent cyclophilin inhibitors based on the structural simplification of sanglifehrin A. J. Med. Chem. 60, 1000–1017 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Mackman, R. L. et al. Discovery of a potent and orally bioavailable cyclophilin inhibitor derived from the sanglifehrin macrocycle. J. Med. Chem. 61, 9473–9499 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  71. Flaxman, H. A. et al. Sanglifehrin A mitigates multi-organ fibrosis in vivo by inducing secretion of the collagen chaperone cyclophilin B. Preprint at https://www.biorxiv.org/content/10.1101/2023.03.09.531890v1 (2023).

  72. Tanaka, N. et al. Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK reactivation. Cancer Discov. 11, 1913–1922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fan, Y.-Y. et al. Phainanoids A-F, a new class of potent immunosuppressive triterpenoids with an unprecedented carbon skeleton from Phyllanthus hainanensis. J. Am. Chem. Soc. 137, 138–141 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Xie, J. et al. Asymmetric total synthesis of (+)-phainanoid A and biological evaluation of the natural product and its synthetic analogues. J. Am. Chem. Soc. 145, 4828–4852 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Xie, J., Liu, X., Zhang, N., Choi, S. & Dong, G. Bidirectional total synthesis of phainanoid A via strategic use of ketones. J. Am. Chem. Soc. 143, 19311–19316 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Yan, B.-C. et al. (−)-Isoscopariusin A, a naturally occurring immunosuppressive meroditerpenoid: structure elucidation and scalable chemical synthesis. Angew. Chem. Int. Ed. 60, 12859–12867 (2021).

    Article  CAS  Google Scholar 

  77. Fujine, K. et al. FR252921, a novel immunosuppressive agent isolated from Pseudomonas fluorescens: I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities of FR252921, FR252922 and FR256523. J. Antibiot. 56, 55–61 (2003).

    Article  CAS  Google Scholar 

  78. Fujine, K. et al. FR252921, a novel immunosuppressive agent isolated from Pseudomonas fluorescens no. 408813: II. In vitro property and mode of action. J. Antibiot. 56, 62–67 (2003).

    Article  CAS  Google Scholar 

  79. Fujine, K. et al. FR252921, a novel immunosuppressive agent isolated from Pseudomonas fluorescens no. 408813. III. In vivo activities. J. Antibiot. 56, 68–71 (2003).

    Article  CAS  Google Scholar 

  80. Falck, J. R., He, A., Fukui, H., Tsutsui, H. & Radha, A. Synthesis and stereochemical assignment of FR252921, a promising immunosuppressant. Angew. Chem. Int. Ed. 46, 4527–4529 (2007).

    Article  CAS  Google Scholar 

  81. Amans, D., Bellosta, V. & Cossy, J. Synthesis of a promising immunosuppressant: FR252921. Org. Lett. 9, 4761–4764 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Dethe, D. H., Kumar, V., Beeralingappa, N. C., Mishra, K. B. & Nirpal, A. K. Synthesis of polyene bioactive natural products: FR252921 and vitamin A. Org. Lett. 24, 2203–2207 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, Y. et al. A domino 10-step total synthesis of FR252921 and its analogues, complex macrocyclic immunosuppressants. J. Am. Chem. Soc. 141, 13772–13777 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, J., Kim, S. G. & Blenis, J. Rapamycin: one drug, many effects. Cell Metab. 19, 373–379 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoo, Y. J., Kim, H., Park, S. R. & Yoon, Y. J. An overview of rapamycin: from discovery to future perspectives. J. Ind. Microbiol. Biotechnol. 44, 537–553 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, R. et al. Creating novel translation inhibitors to target pro-survival proteins in chronic lymphocytic leukemia. Leukemia 33, 1663–1674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 8 (2022).

    Article  CAS  Google Scholar 

  88. Gates, A. J., Gysi, D. M., Kellis, M. & Barabási, A.-L. A wealth of discovery built on the Human Genome Project—by the numbers. Nature 590, 212–215 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  89. Slatko, B. E., Gardner, A. F. & Ausubel, F. M. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol. 122, e59 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hu, T., Chitnis, N., Monos, D. & Dinh, A. Next-generation sequencing technologies: an overview. Hum. Immunol. 82, 801–811 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  PubMed  Google Scholar 

  92. Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Deutscher, R. C. E. et al. Discovery of fully synthetic FKBP12-mTOR molecular glues. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/64be9dddb605c6803b466b52 (2023).

  94. Mayor-Ruiz, C. et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16, 1199–1207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dubinsky, L., Krom, B. P. & Meijler, M. M. Diazirine based photoaffinity labeling. Bioorg. Med. Chem. 20, 554–570 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Wright, M. H. & Sieber, S. A. Chemical proteomics approaches for identifying the cellular targets of natural products. Nat. Prod. Rep. 33, 681–708 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Generous support by the ERC (CoG VINCAT 682002 to N.M.), the FWF (Projects P32607 and P35045) and the WWTF (Project LS21-010) is acknowledged. We are grateful to the University of Vienna and the Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM) for continued support of our research programmes. We also thank S.S. Strohmenger and L.M. Gail (both CeMM) for fruitful discussions and helpful input.

Author information

Authors and Affiliations

Authors

Contributions

M.S., I.S., D.K. and N.M. contributed to discussions and wrote the manuscript.

Corresponding author

Correspondence to Nuno Maulide.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schupp, M., Saridakis, I., Kaiser, D. et al. Chemical synthesis as a discovery platform in immunosuppression and determination of mode of action. Nat. Synth 3, 162–174 (2024). https://doi.org/10.1038/s44160-023-00423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00423-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing