Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New Routes to Plant Secondary Products

Abstract

For some years, there has been great interest in the exploitation of plant cell cultures to produce fine chemicals. With a few exceptions, progress in commercialization has been slow, largely due to the low and/or unstable productivity of many undifferentiated cultures. Recent developments leading to the production of rapidly growing, organized, ‘hairy’ root cultures following the genetic transformation of plants with Agrobacterium rhizogenes may revolutionize certain areas of plant cell biotechnology. We discuss the application of hairy root technology to the production of plant secondary metabolites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tabata, M. and Fujita, Y. 1985. Production of shikonin by plant cell cultures, p. 207–218. In: Biotechnology in Plant Science. Zaitlin, M., Day, P. and Hollaender, A. (Eds.). Academic Press, New York.

    Chapter  Google Scholar 

  2. Kurz, W.G.W. and Constabel, F. 1979. Plant cell cultures, a potential source of pharmaceuticals. Adv. Appl. Microbiol. 25: 209–240.

    Article  CAS  Google Scholar 

  3. Zenk, M.H. 1978. The impact of plant cell cultures on industry, p. 1–13. In: Frontiers of Plant Tissue Culture 1978. Thorpe, T. A. (Ed.). University of Calgary Press, Alberta.

    Google Scholar 

  4. Zenk, M.H., El-Shagi, H., Arens, H., Stöckigt, J., Weiler, E.W., and Deus, B. 1977. Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus, p. 27–43. In: Plant Tissue Culture and its Bio-technological Application. Barz, W., Reinhard, E., and Zenk, M. H. (Eds.). Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  5. Fujita, Y., Takahashi, S., and Yamada, Y. 1984. Selection of cell lines with high productivity of shikonin derivatives through protoplast of Lithospermum erythrorhizon . Proceedings, 3rd European Conference on Biotechnology 1: 161–166.

    Google Scholar 

  6. Deus-Neumann, B. and Zenk, M.H. 1984. Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Medica 50: 427–431.

    Article  CAS  Google Scholar 

  7. Flores, H.E. and Filner, P. 1985. Metabolic relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae, p. 174–185. In: Primary and Secondary Metabolism of Plant Cell Cultures. Neumann, K-H., Barz, W., and Reinhard, E. (Eds.). Springer-Verlag, Berlin and Heidelberg.

    Chapter  Google Scholar 

  8. Flores, H.E. 1986. Use of plant cell and organ culture in the production of biological chemicals. In: Applications of Biotechnology to Agricultural Chemistry. Lebaron, H., Mumma, R. O., Honeycutt, R. C., and Duesing, J. H. (Eds.). Proc. 190th Amer. Chem. Soc. Symposium Series 190.

    Google Scholar 

  9. Hamill, J.D., Parr, A.J., Robins, R.J., and Rhodes, M.J.C. 1986. Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes . Plant Cell Rep. 5: 111–114.

    Article  CAS  Google Scholar 

  10. Kamada, H., Okamura, N., Satake, M., Harada, H., and Shimomura, K. 1986. Alkaloid production by hairy root cultures in Atropa belladonna . Plant Cell Rep. 5: 239–242.

    Article  CAS  Google Scholar 

  11. Mano, Y., Nabeshima, S., Matsui, C., and Ohkawa, H. 1986. Production of tropane alkaloids by hairy root cultures of Scopolia japonica . Agric. Biol. Chem. 50: 2715–2722.

    CAS  Google Scholar 

  12. Tepfer, D. 1984. Transformation of several species of higher plants by Agrobacterium rhizogenes: Sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967.

    Article  CAS  Google Scholar 

  13. Huffman, G.A., White, F.F., Gordon, M.P., and Nester, E.W. 1984. Hairy root inducing plasmid: Physical map and homology to tumor inducing plasmids. J. Bacteriol. 157: 269–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. De Paolis, A., Mauro, M.L., Pomponi, M., Cardarelli, M., Spano, L., and Costantino, P. 1985. Localization of agropine-synthesizing functions in the TR region of the root inducing plasmid Agrobacterium rhizogenes 1855. Plasmid 13: 1–7.

    Article  CAS  Google Scholar 

  15. Jouanin, L. 1984. Restriction map of an agropine Ri plasmid and its homologies with Ti plasmids. Plasmid 12: 91–102.

    Article  CAS  Google Scholar 

  16. Ambros, P.F., Matzke, A.J.M., and Matzke, M.A. 1986. Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J. 5: 2073–2077.

    Article  CAS  Google Scholar 

  17. Cardarelli, M., Spano, L., De Paolis, A., Mauro, M.L., Nitali, G., and Costantino, P. 1985. Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes 1855. Plant Mol. Biol. 5: 385–391.

    Article  CAS  Google Scholar 

  18. Ooms, G., Karp, A., Burrell, M.M., Twell, D., and Roberts, J. 1985. Genetic modification of potato development using Ri T-DNA. Theor. Appl. Genet. 70: 440–446.

    Article  CAS  Google Scholar 

  19. Sederoff, R., Stomp, A.M., Chilton, W.S., and Moore, L.W. 1986. Gene transfer into loblolly pine by Agrobacterium tumefaciens . Bio/Technology 4: 647–649.

    CAS  Google Scholar 

  20. Wei, Z-M., Kamada, H., and Hirada, H. 1986. Transformation of Solanum nigrum protoplasts by Agrobacterium rhizogenes . Plant Cell Rep. 5: 93–96.

    Article  CAS  Google Scholar 

  21. Stachel, S.E., Messens, E., Van Montagu, M., and Zambryski, P. 1986. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens . Nature 318: 624–629.

    Article  CAS  Google Scholar 

  22. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.

    Article  CAS  Google Scholar 

  23. Gamborg, O.L., Miller, R.A., and Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.

    Article  CAS  Google Scholar 

  24. Parr, A.J. and Hamil, J.D. 1987. Relationships between biosynthetic capacities of Agrobacterium rhizogenes transformed hairy roots and intact, uninfected plants of Nicotiana spp. Phytochemistry, in press.

  25. Present authors, unpublished.

  26. Payne, J., Hamill, J.D., Robins, R.J., and Rhodes, M.J.C. 1987. Production of hyoscyamine by hairy root cultures of Datura stramonium . Planta medica, In press.

  27. Grimsley, N., Hohn, T., Davies, J.W., and Hohn, B. 1987. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177–179.

    Article  CAS  Google Scholar 

  28. Shimomura, K., Satake, M., and Kamada, H. 1986. Production of useful secondary metabolites by hairy roots transformed with Ri plasmid, p. 250. In: Proc. VI International Congress of Plant Tissue and Cell Culture. Somers, D., Gegenbach, B. G., Biesboer, D. D., Hackett, W. P., and Green, C. E. (Eds.) University of Minnesota, Minneapolis.

    Google Scholar 

  29. Flores, H.E., Hoy, M.W., and Pickard, J.J. 1986. Production of secondary metabolites by normal and transformed root cultures, p. 117. Ibid.

  30. Hashimoto, T., Yukimune, Y., and Yamada, Y. 1986. Tropane alkaloid production in Hyoscyamus root cultures. J. Plant Physiol. 124: 61–75.

    Article  CAS  Google Scholar 

  31. Norton, R.A. and Towers, G.H.N. 1986. Factors affecting synthesis of polyacetylenes in root cultures of Bidens alba . J. Plant Physiol. 122: 41–53.

    Article  CAS  Google Scholar 

  32. Endo, T. and Yamada, Y. 1985. Alkaloid production in roots of three species of Duboisia . Phytochemistry 24: 1233–1236.

    Article  CAS  Google Scholar 

  33. Kamada, H., personal communication.

  34. Rhodes, M.J.C., Hilton, M., Parr, A.J., Hamill, J.D., and Robins, R.J. 1986. Nicotine production by “hairy root” cultures of Nicotiana rustica: fermentation and alkaloid recovery. Biotech. Lett. 8: 415–420.

    Article  CAS  Google Scholar 

  35. Robins, R.J. and Rhodes, M.J.C. 1986. The stimulation of anthraquinone production by Cinchona ledgeriana cultures with polymeric adsorbents. Appl. Microbiol. Biotechnol. 24: 35–41.

    Article  CAS  Google Scholar 

  36. Constabel, F. and Eilert, U. 1986. Elicitation of product accumulation. IAPTC Newsletter 50: 2–8.

    Google Scholar 

  37. Banerjee-Chattopadhyay, S., Schwemmin, A.M., and Schwemmin, D.J. 1985. A study of karyotypes and their alterations in cultured and Agrobacterium transformed roots of Lycopersicon peruvianum . Theor. Appl. Genet. 71: 258–262.

    Article  CAS  Google Scholar 

  38. Aird, E.L.H., Hamill, J.D., and Rhodes, M.J.C. 1987. Chromosome stability in “hairy root” cultures from a wide range of plant species transformed by Agrobacterium rhizogenes . Theor. Appl. Genet. (submitted).

  39. Weiler, E.W., Krüger, H., and Zenk, M.H. 1980. Radioimmunoassay for the determination of the steroidal glycoalkaloid solasodine and related compounds in living and herbarium specimens. Planta Medica 39: 112–124.

    Article  CAS  Google Scholar 

  40. El-Dabbas, S.W. and Evans, W.C. 1982. Alkaloids of the genus Datura, section Brugmansia. X, Alkaloid content of Datura hybrids. Planta Medica 44: 184–185.

    Article  CAS  Google Scholar 

  41. Furze, J.M., Hamill, J.D., Parr, A.J., Robins, R.J., and Rhodes, M.J.C. 1987. Variations in morphology and nicotine alkaloid accumulation in protoplast-derived clones of “hairy root” cultures of Nicotiana rustica . J. Plant Physiol. In press

  42. Robins, R.J., Hamill, J.D., Parr, A.J., Smith, K., Walton, N.J., and Rhodes, M.J.C. 1987. Potential for use of nicotinic acid as a selective agent for isolation of high nicotine-producing lines of Nicotiana rustica hairy root cultures. Plant Cell Rep. 6: 122–126.

    CAS  PubMed  Google Scholar 

  43. Comai, L., Facciotti, D., Hiatt, W.R., Thomas, G., Rose, R.E., and Stalker, D.M. 1985. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741–744.

    Article  CAS  Google Scholar 

  44. Hamill, J.D., Prescott, A., and Martin, C. 1987. An assessment of the efficiency of cotransformation of the T-DNA of Agrobacterium rhizogenes and the T-DNA of disarmed binary vectors derived from A. tumefaciens . Plant Mol. Biol. (submitted).

  45. Trulson, A.J., Simpson, R.B., and Shahin, E.A. 1986. Transformation of cucumber (Cucumis sativus L) plants with Agrobacterium rhizogenes . Theor. Appl. Genet. 73: 11–15.

    Article  CAS  Google Scholar 

  46. Shahin, E.A., Sukhapinda, K., Simpson, R.B., and Spivey, R. 1986. Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbor binary vector T-DNA, but no Ri plasmid T-DNA. Theor. Appl. Genet. 72: 770–777.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamill, J., Parr, A., Rhodes, M. et al. New Routes to Plant Secondary Products. Nat Biotechnol 5, 800–804 (1987). https://doi.org/10.1038/nbt0887-800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0887-800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing