Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Cloning and Expression of a Yeast Ubiquitin-Protein Cleaving Activity in Escherichia Coli

Abstract

We have cloned the gene coding for a ubiquitin-protein hydrolase from the yeast Saccharomyces cerevisiae. The gene (YUH1) was isolated from a yeast genomic library by screening with an oligonucleotide probe designed from the amino acid sequence of the purified hydrolase. The YUH1 gene encodes a 26 kD protein and contains no introns. The YUH1 gene product can be overexpressed in active form in Escherichia coli and purified by a two column procedure. The purified hydrolase is capable of cleaving ubiquitin-protein fusions in vitro specifically at the ubiquitin fusion junction and requires no high energy cofactors. Fusions can also be cleaved in E. coli in strains expressing the hydrolase. Gene disruptions in haploid yeast strains have no apparent phenotypic change and ubiquitin-protein hydrolase activity in extracts is normal, indicating the existence of additional genes for ubiquitin-protein hydrolase. In vitro and in vivo cleavage of ubiquitin-protein fusions may be a useful method of producing proteins with defined ammo-termini.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rechsteiner, M. 1987. Ubiquitin-mediated pathways for intracellular proteolysis. Ann. Rev. Cell. Biol. 3:1–30.

    Article  CAS  PubMed  Google Scholar 

  2. Rechsteiner, M. 1988. Ubiquitin. Plenum Press, New York.

    Book  Google Scholar 

  3. Finley, D. and Varshavsky, A. 1985. The ubiquitin system: functions and mechanisms. Trends Biochem. Sci. 10:343–346.

    Article  CAS  Google Scholar 

  4. Ozkaynak, E., Finley, D. and Varshavsky, A. 1984. The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312:663–666.

    Article  CAS  PubMed  Google Scholar 

  5. Ozkaynak, E., Finley, D., Solomon, M.J., and Varshavsky, A. 1987. The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6:1429–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, C.-C., Miller, H.I., and Kohr, W. 1989. Ubiquitin-protein hydrolase from yeast: purification and rapid assay. Submitted.

  7. Goldknopf, I.L. and Busch, H. 1978. Modification of nuclear proteins: The ubiquitin-histone 2A conjugate, p. 149–180. In: The Cell Nucleus, Vol. VI, Academic Press, New York.

    Google Scholar 

  8. Levinger, L. and Varshavsky, A. 1982. Selective arrangement of ubiquitinated and D1-containing nucleosomes within the Drosophila genome. Cell 28:375–385.

    Article  CAS  PubMed  Google Scholar 

  9. Yarden, Y., Escobedo, J.A., Kwang, W.-J., Yang-Feng, T.L., Daniel, T.O., Tremble, P.M., Chen, E.Y., Ando, M.E., Harkins, R.N., Francke, U., Fried, V.A., Ullrich, A. and Williams, L.T. 1988. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 323:226–232.

    Article  Google Scholar 

  10. Chin, D.T., Kuehl, L., and Rechsteiner, M. 1982. Conjugation of ubiquitin to denatured hemoglobin is proportional to the rate of hemoglobin degradation in HeLa cells. Proc. Natl. Acad. Sci. USA 79:5857–5861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Siegelman, M., Bond, M.W., Gallatin, W.M., St. John, T., Smith, H.T., Fried, V.A. and Weissman, I.L. 1986. Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein. Science 231:823–829.

    Article  CAS  PubMed  Google Scholar 

  12. Pickart, C.M. and Rose, I.A. 1985. Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides. J. Biol. Chem. 260:7903–7910.

    CAS  PubMed  Google Scholar 

  13. Hershko, A., Heller, H., Elias, S. and Ciechanover, A. 1983. Components of the ubiquitin-protein ligase system. J. Biol. Chem. 256:8206–8214.

    Google Scholar 

  14. Hershko, A., Ciechanover, A., Heller, H., Haas, A.L., and Rose, I. 1980. Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl. Acad. Sci. USA 77:1783–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hershko, A., Leshinsky, E., Ganoth, D., and Heller, H. 1984. ATP-dependent degradation of ubiquitin-protein conjugates. Proc. Natl. Acad. Sci. USA 81:1619–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ganoth, D., Leshinsky, E., Eytan, E., and Hershko, A. 1988. A multicomponent system that degrades proteins conjugated to ubiquitin. J. Biol. Chem. 263:12412–12419.

    CAS  PubMed  Google Scholar 

  17. Rose, I.A. and Warms, J.V.B. 1983. An enzyme with ubiquitin carboxy-terminal esterase activity from reticulocytes. Biochemistry 22:4234–4237.

    Article  CAS  PubMed  Google Scholar 

  18. Pickart, C.M. and Rose, I.A. 1986. Mechanism of ubiquitin carboxyl-terminal hydrolase: borohydride and hydroxylamine inactivate in the presence of ubiquitin. J. Biol. Chem. 261:10210–10217.

    CAS  PubMed  Google Scholar 

  19. Rose, I. 1988. Ubiquitin carboxyl-terminal hydrolases, p. 135–155. In: Ubiquitin. M. Rechsteiner (Ed.) Plenum Press, New York.

    Chapter  Google Scholar 

  20. Finley, D., Ozkaynak, E. and Varshavsky, A. 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046.

    Article  CAS  PubMed  Google Scholar 

  21. Jentsch, S., McGrath, J.P., and Varshavsky, A. 1987. The DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329:131–134.

    Article  CAS  PubMed  Google Scholar 

  22. Finley, D., Ciechanover, A. and Varshavsky, A. 1984. Thermolability of ubiquitin-activating enzyme form the mammalian cell-cycle mutant ts85. Cell 37:43–55.

    Article  CAS  PubMed  Google Scholar 

  23. Bennetzen, J.L. and Hall, B.D. 1982. Primary structure of the Saccharomyces cerevtsiae gene for alcohol dehydrogenase I. J. Biol. Chem. 257:3026–3031.

    CAS  PubMed  Google Scholar 

  24. Green, M.R. 1986. Pre-mRNA splicing. Ann. Rev. Genet. 20:671–698.

    Article  CAS  PubMed  Google Scholar 

  25. Hahn, S., Hoar, E.T. and Guarente, L. 1985. Each of three “TATA elements” specifies a subset of the transcription initiation sites at the CYC-1 promoter of Saccharomyes cerevtsiae. Proc. Natl. Acad. Sci. USA 82:8562–8566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bachmair, A., Finley, D., and Varshavsky, A. 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186.

    Article  CAS  PubMed  Google Scholar 

  27. Jonnalagadda, S., Butt, T.R., Marsh, J., Sternberg, E.J., Mirabelli, C.K., Ecker, D.J., and Crooke, S.T. 1987. Expression and accurate processing of yeast penta-ubiquitin in Escherichia coli. J. Biol. Chem. 36:17750–17756.

    Google Scholar 

  28. Fasiolo, F., Bonnet, J. and Lacroute, F. 1981. Cloning of the yeast methionyl tRNA synthetase gene. J. Biol. Chem. 256:2324–2328.

    CAS  PubMed  Google Scholar 

  29. Vijay-Kumar, S., Bugg, C.E., Wilkinson, K.D., Vierstra, R.D., Hatfield, P.M., and Cook, W.J. 1987. Comparisons of the three-dimensional structures of human, yeast and oat ubiquitin. J. Biol. Chem. 262:6396–6399.

    CAS  PubMed  Google Scholar 

  30. Benton, W.D. and Davis, R.W. 1977. Screening lambda gt recombinant clones by hybridization to single plaques in situ. Science 196:180.

    Article  CAS  PubMed  Google Scholar 

  31. Miller, H.I. 1988. Practical aspects of preparing phage and plasmid DNA. Meth. Enzymol. Vol:145–170.

  32. Hinnen, A., Hicks, J.B., and Fink, G.R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75:1929–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Messing, J. and Vieira, J. 1982. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19:269–276.

    Article  CAS  PubMed  Google Scholar 

  34. O'Farrell, P. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007–4021.

    CAS  PubMed  Google Scholar 

  35. Henzel, W.J., Rodrigues, H., and Watanabe, C. 1987. Computer analysis of automated Edman degradation and amino acid analysis data. J. Chromatogr. 404:41–52.

    Article  CAS  PubMed  Google Scholar 

  36. Sherman, F., Fink, G.R., and Hicks, J.B. 1981. Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  37. Rothstein, R. 1983. One-step gene disruption in yeast. Meth. Enzymol. 101:202–211.

    Article  CAS  Google Scholar 

  38. Richardson, C.C. and Tabor, S. 1985. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82:1074–1078.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sanger, F., Nicklen, S., and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitor. Proc. Natl. Acad. Sci. USA 74:5463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sherwood, O.D. 1988. Relaxin, p.585–673. In: The Physiology of Reproduction. E. Knobil and J. Neill (Eds.) Raven Press, New York.

    Google Scholar 

  41. Sanger, F., Coulson, A.R., Hong, G.-F., Hill, D.F. and Peterson, G.B. 1982. Nucleotide sequence of bacteriophage λ DNA. J. Mol. Biol. 162:729–773.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, H., Henzel, W., Ridgway, J. et al. Cloning and Expression of a Yeast Ubiquitin-Protein Cleaving Activity in Escherichia Coli. Nat Biotechnol 7, 698–704 (1989). https://doi.org/10.1038/nbt0789-698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0789-698

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing