Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Genetic transformation of cassava (Manihot esculenta Crantz)

Abstract

Genetic engineering can be used to complement traditional breeding methods in crop plant improvement. Transfer of genes from heterologous species provides the means of selectively introducing new traits into crop plants and expanding the gene pool beyond what has been available to traditional breeding systems. The prerequisites for genetic engineering are efficient transformation and tissue culture systems that allow selection and regeneration of transgenic plants. Cassava, an integral plant for food security in developing countries, has until now been recalcitrant to transformation approaches. We report here a method for regenerating stably transformed cassava plants after cocultivation with Agrobacterium tumefaciens, which opens cassava for future improvement via biotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cock, J.H. 1985. p. 192 in Cassava: new potential fora neglegted crop. Westview Press, Boulder, Colorado.

    Google Scholar 

  2. De Brujin, G.H. and Fresco, L.O. 1989. The importance of cassava in world food production. Neth. J. Agric. Sci. 37: 21–34.

    Google Scholar 

  3. Roca, W.M., Henry, G., Angel, F., and Sarria, R. 1992. Biotechnology research applied to cassava improvement at the International Center of Tropical Agriculture (CIAT). AgBiotech News and Information 4: 303N–308N.

    Google Scholar 

  4. Centro Internacional de Agricultura Tropical. 1980. Cassava. Program annual report 1979. Cali, Colombia.

  5. Food and Agriculture Organization of the United Nations. 1995. FAO Production Yearbook 1994. FAO statistics series 125. 48: 93–94.

  6. Fauquet, C. and Fargtte, D. 1990. African cassava mosaic virus: etiology, epide-mology and control. Plant Dis. 74: 404–411.

    Article  Google Scholar 

  7. Otim-Nape, G.W. 1995. The African cassava mosaic virus (ACMV): a threat to food security in Africa. Proceedings of the Second International Scientific Meeting of The Cassava Biotechnology Network. CIAT working document 150, 2: 519–527.

    Google Scholar 

  8. Rosling, H. 1988. p. 40 in Cassava toxicity and food security. Unicef, African Household Security Programme. Tryck Kontakt, Uppsala, Sweden.

    Google Scholar 

  9. Stamp, J.A. and Henshaw, G.G. 1987. Somatic embryogenesis from clonal leaf tissues of cassava. Ann. Bot. 59: 445–450.

    Article  CAS  Google Scholar 

  10. Stamp, J.A. and Henshaw, G.G. 1987. Secondary somatic embryogenesis and plant regeneration in cassava. Plant Cell, Tiss. Org. Cult. 10: 227–233.

    Article  CAS  Google Scholar 

  11. Szabados, L., Hoyos, R., and Roca, W. 1987. In vitro somatic embryogenesis and plant regeneration of cassava. Plant Cell Rep. 6: 248–251.

    Article  CAS  PubMed  Google Scholar 

  12. Roca, W.M. and Thro, A.M. (eds.). 1993. Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. CIAT, Cali, Colombia, working document 123, p. 496.

    Google Scholar 

  13. Cassava Biotechnology Network. 1995. Proceedings of the Second International Scientific Meeting. CIAT working document 150. CIAT, Cali, Colombia. 1: 381.

  14. Schöpke, C., Taylor, N., Carcamo, R., Henshaw, G.G., Beachy, R.N.I., and Fauquet, C.M. 1995. Transformation of cassava embryoids by bombardment of embryogenic suspensions. Proceedings of the Second International Scientific Meeting of The Cassava Biotechnology Network. CIAT working document 150, 1: 257–263.

    Google Scholar 

  15. Sarria, R.A. et al. 1993. Towards the development of Agrobacterium tumefaciens and particle bombardment-mediated cassava transformation, pp. 128–133 in Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. CIAT Working document, p. 123. Roca, W.M. and Thro, A.M. (eds.).

    Google Scholar 

  16. Schöpke, C., Chavarriaga, P., Fauquet, C.M., and Beachy, R.N. 1993. Cassava tissue culture and transformation: improvement of culture media and the effect of different antibiotics on leaf tissues, pp. 140–145 in Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. CIAT working document 123. Roca, W.M. and Thro, A.M. (eds.).

    Google Scholar 

  17. Schöpke, C., Franche, C., Bogusz, D., Chavarriaga, P., Fauquet, C.M., and Beachy, R.N. 1993. Transformation in cassava (Manihot esculenta Crantz), pp. 273–289 in Biotechnology in Agriculture and Forestry. Bajaj, Y.P.S. (ed.). Springer-Verlag, Berlin.

    Google Scholar 

  18. Li, H.-Q., Huang, Y.-W., Liang, C.-Y., and Guo, J.-Y. 1995. Improvement of plant regeneration from somatic embryos in cassava. Proceedings of the Second International Scientific Meeting of The Cassava Biotechnology Network. CIAT working document 150. 1: 289–302.

    Google Scholar 

  19. Stamp, J.A. 1987. Somatic embryogenesis in cassava: the anatomy and morphology of the regeneration process. Ann. Bot. 59: 451–459.

    Article  Google Scholar 

  20. Raemakers, C.J.J.M., Jacobsen, E. and Visser, R.G.F. 1995. Histology of somatic embryogenesis and evaluation of somaclonal variation. Proceedings of the Second International Scientific Meeting of The Cassava Biotechnology Network. CIAT working document 150, 1: 336–354.

    Google Scholar 

  21. Calderón, A. 1988. Transformation of Manihot esculents (cassava) using Agrobacterium tumefaciens and expression of the introduced foreign genes in transformed cell lines. MSc thesis, Vrije Universiteit Brussels, Belgium.

    Google Scholar 

  22. Sarria, R., Torres, E., Balcazar, N., Destefano-Beltran, L., and Roca, W.M. 1995. Progress in Agrobacterium-mediateti transformation of cassava (Manihot esculenta Crantz). Proceedings of the Second International Scientific Meeting of The Cassava Biotechnology Network. CIAT working document 150, 1: 241–244.

    Google Scholar 

  23. Chavarriaga-Aguirre, P., Schöpke, C., Sangare, A., Fauquet, C.M., and Beachy, R.N. 1993. Transformation of cassava (Manihot esculenta Crantz) embryogenic tissues using Agrobacterium tumefaciens, pp. 222–228 in Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. CIAT working document 123. Roca, W.M. and Thro, A.M. (eds.).

    Google Scholar 

  24. Hoekema, A., Hoykaas, P., and Schilperoort, R. 1984. Transfer of octopine T-DNA segment to plant cells mediated by different types of Agrobacterium tumor or root inducing plasmids: generality of virulence systems. J. Bact. 158: 383–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa I.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271–282.

    Article  CAS  PubMed  Google Scholar 

  26. Holtorf, S., Apel, K., and Bohlmann, H. 1995. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana . Plant Mol. Biol. 29: 637–646.

    Article  CAS  PubMed  Google Scholar 

  27. Holsters, M. et al. 1980. The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3: 212–230.

    Article  CAS  PubMed  Google Scholar 

  28. Sciaky, D., Montoya, A.L., and Chilton, M.D. 1978. Fingerprints of Agrobacterium Ti-plasmids. Plasmid 1: 238–253.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, C.N., Li, X.O., and Gelvin, S.B. 1992. Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens . Plant. Mol. Biol. 20: 1071–1087.

    Article  CAS  PubMed  Google Scholar 

  30. Arias-Garzón, D.I. and Sarria, R. 1995. New Agrobacterium tumefaciens plasmids for cassava transformation. Proceedings of the Second International Scientific Meeting of The Cassava Biotechnology Network. CIAT working document 150, 1: 245–251.

    Google Scholar 

  31. Hood, E.E., Helmer, G.L., Fraley, R.T., and Chilton, M.-D. 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168: 1291–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hood, E.E., Fraley, R.T., and Chilton, M.-D. 1987. Virulence of Agrobacterium tumefaciens A281 on legumes. Plant Physiol. 83: 529–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Puonti-Kaerlas, J. 1991. Tissue culture and genetic transformation of pea (Pisum sativum L.). Acta Universitatis Upsaliensis, Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science. Almqvist & Wiksell International, Stockholm.

    Google Scholar 

  34. Zambryski, P. 1988. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Ann. Rev. Genet. 22: 1–30.

    Article  CAS  PubMed  Google Scholar 

  35. Grevelding, C., Fantes, V., Kemper, E., Schell, J., and Masterson, R. 1993. Single-copy T-DNA insertions in Arabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs. Plant Mol. Biol. 23: 847–860.

    Article  CAS  PubMed  Google Scholar 

  36. Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L., and M, R.-S. 1990. Construction of an intron-containing marker, gene splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245–250.

    Article  CAS  PubMed  Google Scholar 

  37. Henry, G., Thro, A.-M., and Lynam, J. 1995. Cassava biotechnology priority setting: old hat for a new tool. Proceedings of the Second International Scientific Meeting of The Cassava Biotechnology Network. ClATworking document 150. 1: 46.1–46.18

    Google Scholar 

  38. Vaeck, M. et al. 1987. Transgenic plants protected from insect attack. Nature 327: 239–247.

    Article  Google Scholar 

  39. Fischhoff, D.A. et al. 1987. Insect tolerant transgenic tomato plants. Bio/Technology 5: 807–813.

    CAS  Google Scholar 

  40. Perlak, F.J. et al. 1990. Insect resistant cotton plants. Bio/Technology 8: 939–943.

    CAS  Google Scholar 

  41. Wünn, J. et al. 1996. Transgenic indica rice breeding line IR58 expressing a synthetic crylA(b) gene from Bacillus thurigiensis provides affective insect pest control. Bio/Technology 14: 171–176.

    Google Scholar 

  42. Fauquet, C.M., Schöpke, C., Chavarriaga-Aguirre, P., Sangare, A., and Beachy, R.N. 1993. Genetic engineering technologies to control viruses and their application to cassava viruses, pp. 190–207 in Proceedings of the First International Scientific Meeting of the Cassava Biotechnology Network. CIAT working document 123. Roca, W.M. and Thro, A.M. (eds.).

    Google Scholar 

  43. Beachy, R.N., Loesch-Fries, S., and Turner, N.E. 1990. Coat protein-mediated resistance against virus infection. Annu. Rev. Phytopathol. 28: 451–474.

    Article  CAS  Google Scholar 

  44. Wilson, T.M.A. 1993. Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc. Natl. Acad. Sci. USA 90: 3134–3141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  46. Bevan, M.W., Flavell, R.B. and Chilton, M.-D. 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304: 184–187.

    Article  CAS  Google Scholar 

  47. Chilton, M.-D. et al. 1974. Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc. Natl. Acad. Sci USA 71: 3672–3676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mendel, R.R., Müller, B., Schulze, J., Kolesnikov, V., and Zelenin, A. 1989. Delivery of foreign genes to intact barley cells by high velocity microprojectiles. Theor. Appl. Gen. 78: 31–34.

    Article  CAS  Google Scholar 

  49. Puonti-Kaerlas, J., Eriksson, T., and Engström, P. 1992. Inheritance of a bacterial hygromycin phosphotransferase gene in the progeny of primary transgenic pea plants. Theor. Appl. Gen. 84: 443–450.

    Article  CAS  Google Scholar 

  50. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  51. Feinberg, A.P. and Vogelstein, B. 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.

    Article  CAS  PubMed  Google Scholar 

  52. Fütterer, J. et al. 1995. Standard molecular techniques for the analysis of transgenic plant, pp. 213–263 in Gene transfer to plants. Potrykus, I. and Spangenberg, G. (eds.). Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HQ., Sautter, C., Potrykus, I. et al. Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14, 736–740 (1996). https://doi.org/10.1038/nbt0696-736

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0696-736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing