Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Efficient and Rapid Affinity Purification of Proteins Using Recombinant Fusion Proteases

Abstract

In the affinity purification of recombinant fusion proteins, the rate-limiting step is usually the efficient proteolytic cleavage and removal of the affinity tail and the protease from the purified recombinant protein. We have developed a rapid, convenient and efficient method of affinity purification which can overcome this limitation. In one example of the method, the protease 3C from a picornavirus (3Cpro), which cleaves specific sequences containing a minimum of 6–7 amino acids, has been expressed as a fusion with glutathione S-transferase. The resultant recombinant ‘fusion protease’ cleaves fusion proteins bearing (from the amino-terminus) the same affinity tail as the fusion protease, a 3Cpro cleavage recognition site, and the recombinant protein of interest. The recombinant protein is purified in a single chromatographic step which removes both the affinity tail and the fusion protease. The advantages over existing methods include much improved specificity of proteolytic cleavage, complete removal of the protease and the affinity tail in one step, and the option of adding any desired amount of fusion protease to ensure efficient cleavage. The potential flexibility of the method is shown by the use of various affinity tails and alternative fusion proteases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Uhlen, M., Forsberg, G., Moks, T., Hartmanis, M. and Nilsson, B. 1992. Fusion proteins in biotechnology. Curr. Opin. Biotechnol. 3: 363–369.

    Article  CAS  Google Scholar 

  2. Ford, C.F., Suominen, I. and Glatz, C.E. 1991. Fusion tails for the recovery and purification of recombinant proteins. Prot. Exp. Pur. 2: 95–107.

    Article  CAS  Google Scholar 

  3. Smith, D.B. and Johnson, K.S. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31–40.

    Article  CAS  Google Scholar 

  4. Arnold, F.H. 1991. Metal-affinity separations: a new dimension in protein processing Bio/Technology. 9: 151–156.

    Article  CAS  Google Scholar 

  5. Van Dyke, M.W., Sirito, M. and Sawadogo, M. 1992. Single-step purification of bacterially expressed polypeptides containing an oligo-histidine domain. Gene 111: 99–104.

    Article  CAS  Google Scholar 

  6. di Guan, C., Li, P., Riggs, P.D. and Inouye, H. 1988. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67: 21–30.

    Article  CAS  Google Scholar 

  7. Taylor, M.E. and Drickamer, K. 1991. Carbohydrate-recognition domains as tools for rapid purification of recombinant eukaryotic proteins. Biochem. J. 274: 575–580.

    Article  CAS  Google Scholar 

  8. Robben, J., Massie, G., Bosmans, E., Wellens, B. and Volckaert, G. 1993. An Escherichia coli plasmid vector system for high-level production and purification of heterologous peptides fused to active chloramphenicol acetyltransferase. Gene 126: 109–113.

    Article  CAS  Google Scholar 

  9. Hopp, T.P., Prickett, K.S., Price, V.L., Libby, R.L., March, C.J., Cerretti, D.P., Urdal, D.L. and Conlon, P.J. 1988. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6: 1204–1210.

    Article  CAS  Google Scholar 

  10. Löwenadler, B., Jansson, B., Paleus, S., Holmgren, E., Nilsson, B., Moks, T., Palm, G., Josephson, S., Philipson, L. and Uhlen, M. 1987. A gene fusion system for generating antibodies against short peptides. Gene 58: 87–97.

    Article  Google Scholar 

  11. Chang, J.-Y. 1985. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur. J. Biochem. 151: 217–224.

    Article  CAS  Google Scholar 

  12. Porter, A.G. 1993. Picornavirus nonstructural proteins: emerging roles in virus replication and inhibition of host cell functions. J. Virol. 67: 6917–6921.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Leong, L.E.-C., Walker, P.A. and Porter, A.G. 1992. Efficient expression and purification of a protease from the common cold virus, human rhinovirus type 14. J. Crystal Growth. 122: 246–252.

    Article  CAS  Google Scholar 

  14. Palmenberg, A.C. 1990. Proteolytic processing of picornaviral polyprotein. Annu. Rev. Microbiol. 44: 603–623.

    Article  CAS  Google Scholar 

  15. Cordingley, M.G., Callahan, P.L., Sardana, V.V., Garsky, V.M. and Colonno, R.J. 1990. Substrate requirements of human rhinovirus 3C protease for peptide cleavage in vitro. J. Biol. Chem. 265: 9062–9065.

    CAS  PubMed  Google Scholar 

  16. Sommergrüber, W., Ahorn, H., Zöphel, A., Maurer-Fogy, I., Fessl, F., Schnorrenberg, G., Liebig, H.-D., Blaas, D., Kuechler, E. and Skern, T. 1992. Cleavage specificity on synthetic peptide substrates of human rhinovirus 2 proteinase 2A. J. Biol. Chem. 267: 22639–22644.

    PubMed  Google Scholar 

  17. Stanway, G., Hughes, P.J., Mountford, R.C., Minor, P.D. and Almond, J.W. 1984. The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucl. Acids Res. 12: 7859–7875.

    Article  CAS  Google Scholar 

  18. Pearson, J.D., DeWald, D.B., Mathews, W.R., Mozier, N.M., Zürcher-Neely, H.A., Heinrikson, R.L., Morris, M.A., McCubbin, W.D., McDonald, J.R., Fraser, E.D., Vogel, H.J., Kay, C.M. and Walsh, M.P. 1990. Amino acid sequence and characterization of a protein inhibitor of protein kinase C. J. Biol. Chem. 265: 4583–4591.

    CAS  PubMed  Google Scholar 

  19. Smith, C.A., Davis, T., Anderson, D., Solam, L., Beckmann, M.P., Jerzy, R., Dower, S.K., Cosman, D. and Goodwin, R.G. 1990. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science. 248: 1019–1023.

    Article  CAS  Google Scholar 

  20. Phelps, W.C. and Howley, P.M. 1987. Transcriptional trans-activation by the human papillomavirus type 16 E2 gene product. J. Virol. 61: 1630–1638.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Leong, L.E.C., Walker, P.A. and Porter, A.G. 1993. Human rhinovirus-14 protease 3C (3Cpro) binds specifically to the 5′-noncoding region of the viral RNA. J. Biol. Chem. 268: 25735–25739.

    CAS  PubMed  Google Scholar 

  22. Urzainqui, A. and Carrasco, L. 1989. Degradation of cellular proteins during poliovirus infection: studies by two-dimensional gel electrophoresis. J. Virol. 63: 4729–4735.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brewer, S.J. and Sassenfeld, H.M. 1985. The purification of recombinant proteins using C-terminal polyarginine fusions. Trends Biotechnol. 3: 119–122.

    Article  CAS  Google Scholar 

  24. Taylor, M.E. and Drickamer, K. 1992. Expression and purification of the cytoplasmic tail of an endocytic receptor by fusion to a carbohydrate-recognition domain. Prot. Exp. Pur. 3: 308–312.

    Article  CAS  Google Scholar 

  25. Van Heeke, G., Shaw, R., Schnizer, R., Couton, J.M., Schuster, S.M. and Wagner, F.W. 1993. Gene fusions with human carbonic anhydrase II for efficient expression and rapid single-step recovery of recombinant proteins: expression of the Escherichia coli F1-ATPase E subunit. Prot. Exp. Pur. 4: 265–274.

    Article  CAS  Google Scholar 

  26. Ullmann, A. 1984. One-step purification of hybrid proteins which have β-galactosidase activity. Gene 29: 27–31.

    Article  CAS  Google Scholar 

  27. Sverdrup, F. and Kaleem, S.A. 1994. Replication of human papillomavirus (HPV) DNAs supported by the HPV type 18 E1 and E2 proteins. J. Virol. 68: 505–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sambrook, J.L., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  29. Cheah, K.C., Sankar, S. and Porter, A.G. 1988. Expression and processing of human rhinovirus type 14 polypeptide precursors in E. coli maxicells. Gene 69: 265–274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis E. -C. Leong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, P., Leong, LC., Ng, P. et al. Efficient and Rapid Affinity Purification of Proteins Using Recombinant Fusion Proteases. Nat Biotechnol 12, 601–605 (1994). https://doi.org/10.1038/nbt0694-601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0694-601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing