Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Bacterial Dihydrodipicolinate Synthase and Desensitized Aspartate Kinase: Two Novel Selectable Markers for Plant Transformation

Abstract

Potato plants transformed with a chimeric gene encoding a bacterial desensitized aspartate kinase were selected for resistance to the presence of lysine plus threonine in the regeneration and rooting media. Similarly, plants transformed with a chimeric gene encoding a bacterial dihydrodipicolinate synthase were selected for resistance to the toxic lysine analog S-aminoethyl L-cysteine. In both cases, resistant plants were regenerated, and all were apparently transgenic based on their content of dihydrodipicolinate synthase or aspartate kinase activities that were significantly higher, and much less sensitive to lysine and threonine inhibition, than the endogenous activities in control untransformed plants. Our data suggest that these novel selectable markers may be useful for the isolation of transgenic plants expressing relatively high levels of the gene of interest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fraley, R.T., Rogers, S.G. and Horsch, R.B. 1986. Genetic transformation in higher plants. CRC Critical Reviews in Plant Science 4: 1–45.

    Article  CAS  Google Scholar 

  2. Bevan, M., Flavell, R.B. and Chilton, M.D. 1983. A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 394: 184–187.

    Article  Google Scholar 

  3. Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P., Flick, J., Adams, S., Bittner, M., Brand, L., Fink, C., Fray, J., Galluppi, G., Goldberg, S. and Woo, S. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80: 4803–4806.

    Article  CAS  Google Scholar 

  4. Herrera-Estrella, L., De Block, M., Van Montagu, M. and Schell, J. 1983. Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2: 987–992.

    Article  CAS  Google Scholar 

  5. Vasil, V., Brown, S.M., Re, D., Fromm, M.E. and Vasil, I.K. 1991. Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Bio/Technology 9: 743–747.

    CAS  Google Scholar 

  6. Herrera-Estrella, L., Depicker, A., Van Montagu, M. and Schell, J. 1983. Expression of chimeric genes transferred into plant cells using a Ti-plasmid derived vector. Nature 303: 209–213.

    Article  CAS  Google Scholar 

  7. Waldron, C., Murphy, E.B., Roberts, J.L., Gustafson, G.D., Armour, S.L. and Malcolm, S.K. 1985. Resistance to hygromycin B. A new marker for plant transformation studies. Plant Mol. Biol. 5: 103–108.

    Article  CAS  Google Scholar 

  8. Jones, J.D.G., Svab, Z., Harper, E.C., Hurwitz, C.D. and Maliga, P. 1987. A dominant nuclear streptomycin resistance marker for plant cell transformation. Mol. Gen. Genet. 210: 86–91.

    Article  CAS  Google Scholar 

  9. Hille, J., Verheggen, F., Roelvink, P., Franssen, H., Kammen, A.V. and Zabel, P. 1986. Bleomycin resistance: a new dominant selectable marker for plant transformation. Plant Mol. Biol. 7: 171–176.

    Article  CAS  Google Scholar 

  10. Guerineau, F., Brooks, L., Meadows, J., Robinson, C. and Mullineaux, P. 1990. Sulfonamide resistance gene for plant transformation. Plant Mol. Biol. 15: 127–136.

    Article  CAS  Google Scholar 

  11. Stalker, D.M., McBride, K.E. and Malyj, L.D. 1988. Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242: 419–423.

    Article  CAS  Google Scholar 

  12. Streber, W.R. and Willmitzer, L. 1989. Transgenic tobacco plants expressing a bacterial detoxifying enzyme are resistant to 2,4-D. Bio/Technology 7: 811–816.

    CAS  Google Scholar 

  13. Shah, D.M., Horsch, R.B., Klee, H.J., Kishore, G.M., Winter, J.A., Turner, N.E., Hironaka, C.M., Sanders, P.R., Gasser, C.S., Aykent, S., Siegel, N.R., Rogeers, S.G. and Fraley, R.T. 1986. Engineering herbicide tolerance in transgenic plants. Science 233: 478–481.

    Article  CAS  Google Scholar 

  14. De Block, M., Botterman, J., Vandewiele, M., Docky, J., Thoen, C., Gossele, V., Movva, N.R., Thompson, C., Van Montagu, M. and Leemans, J. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6: 2513–2518.

    Article  CAS  Google Scholar 

  15. Bryan, J.K. 1980. Synthesis of the aspartate family and branched-chain amino acids, p. 402–450. In: The Biochemistry of Plants, Vol 5, Amino Acids and Derivatives. B. J. Miflin (Ed. ), Academic Press, NY

    Google Scholar 

  16. Arruda, P., Bright, S.W., Kueh, J.S.H., Lea, P.J. and Rognes, S.E. 1984. Regulation of aspartate kinase isoenzymes in barley mutants resistant to lysine plus threonine. Plant Physiol. 76: 442–446.

    Article  CAS  Google Scholar 

  17. Miao, S., Duncan, D.R. and Widholm, J.M. 1988. Selection of regenerable maize callus cultures resistant to 5-methyl-DL-tryptophane, S-2-aminoethyl-L-cysteine and high levels of L-lysine plus L-threonine. Plant Cell Tissue Org. Cult. 14: 3–14.

    Article  CAS  Google Scholar 

  18. Rognes, S.E., Simon, W.J. and Miflin, B.J. 1983. Feedback-insensitive aspartate kinase isoenzymes in barley mutants resistant to lysine plus threonine. Planta 157: 32–38.

    Article  CAS  Google Scholar 

  19. Bright, S.W.J., Kueh, J.S.H., Franklin, J., Rognes, S.E. and Miflin, B.J. 1982. Two genes for threonine accumulation in barley seeds. Nature 299: 278–279.

    Article  CAS  Google Scholar 

  20. Dotson, T.J., Frisch, D.A., Somers, D.A. and Gengenbach, B.G. 1990. Lysine-insensitive aspartate kinase in two threonine-over-producing mutants of maize. Planta 182: 546–552.

    Article  CAS  Google Scholar 

  21. Negrutiu, I., Cattoir-Reynearts, A., Verbruggen, I. and Jacobs, M. 1984. Lysine overproducer mutants with altered dihydrodipicolinate synthase from protoplast culture of Nicotiana sylvestris (Spegazzini Comes). Theor. Appl. Genet. 68: 11–20.

    Article  CAS  Google Scholar 

  22. Shaul, O. and Galili, G. 1992. Increased lysine synthesis in tobacco plants that express high levels of bacterial dihyrodipicolinate synthase in their chloroplasts. Plant J. 2: 203–209.

    Article  CAS  Google Scholar 

  23. Piryns, I., Vernaillen, S. and Jacobs, M. 1988. Inhibitory effects of aspartate derived amino acids and aminoethylcysteine, a lysine analog, on growth of sorghum seedlings; relation with three enzymes of the aspartate pathway. Plant Sci. 57: 93–101.

    Article  CAS  Google Scholar 

  24. Yamada, Y., Kumpaisal, R., Hashimoto, T., Sugimoto, Y. and Suzuki, A. 1986. Growth and aspartate kinase activity in wheat cell suspension culture: Effects of lysine analogs and aspartate derived amino acids. Plant Cell Physiol. 27: 607–610.

    CAS  Google Scholar 

  25. Boyes, C.J. and Vasil, I.K. K.1987. In vitro selection for tolerance to S-(2-aminoethyl)-L-cysteine and overproduction of lysine by embryogenic calli and regenerated plants of Pennisetum americanum (L. ) K. Schum. Plant Sci. 50: 195–203.

    Article  CAS  Google Scholar 

  26. Schaeffer, G.W. and Sharpe, J.R. 1981. Lysine in seed protein from S-aminoethyl-L-cysteine resistant anther-derived tissue cultures of rice. In Vitro 17: 345–352.

    Article  CAS  Google Scholar 

  27. Widholm, J.M. 1976. Selection and characterization of cultured carrot and tobacco cells resistant to lysine, methionine, and proline analogs. Can. J. Bot. 54: 1523–1529.

    Article  CAS  Google Scholar 

  28. Perl, A., Shaul, O. and Galili, G. 1992. Regulation of lysine synthesis in transgenic potato plants expressing bacterial dihydrodipicolinate synthase in their chloroplasts. Plant Mol. Biol. 19: 815–823.

    Article  CAS  Google Scholar 

  29. Shaul, O. and Galili, G. 1992. Threonine overproduction in transgenic tobacco plants expressing a mutant desensitized aspartate kinase of Escherichia coli. Plant Physiol. 100: 1157–1163.

    Article  CAS  Google Scholar 

  30. Perl, A., Perl-Treves, R., Galili, S., Shalgi, E., Malkin, S. and Galun, E. 1993. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu. Zn superoxide dismutases. Theor. Appl. Genet. 85: 568–576.

    Article  CAS  Google Scholar 

  31. An, G. 1986. Development of plant promoter expression vectors and their use for analysis of differential activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol. 81: 86–91.

    Article  CAS  Google Scholar 

  32. Bryant, J. and Leather, S. 1992. Removal of selectable marker genes from transgenic plants: needless sophistication or social necessity. Trends in Biotechnology 10: 274–275.

    Article  Google Scholar 

  33. Dale, E.C. and Ow, D.W. 1991. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA 88: 10558–10562.

    Article  CAS  Google Scholar 

  34. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  35. Nitsch, J.P. 1969. Experimental and rogenesis in Nicotiana. Phytomorphology 19: 389–404.

    Google Scholar 

  36. Black, S. and Wright, N.G. 1955. β-aspartokinase and β-aspartyl phosphate. J. Biol. Chem. 213: 27–38.

    CAS  PubMed  Google Scholar 

  37. Galili, S., Galili, G. and Feldman, M. 1991. Chromosomal location of genes for rubisco small subunit and rubisco-binding protein in common wheat. Theor. Appl. Genet. 81: 98–104.

    Article  CAS  Google Scholar 

  38. Boy, E., Borne, F. and Patte, J.C. 1979. Isolation and identification of mutants constitutive for aspartokinase III synthesis in Escherichia coli K12. Biochimie. 61: 1151–1160.

    Article  CAS  Google Scholar 

  39. Odell, J.T., Nagy, F. and Chua, N.-H. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812.

    Article  CAS  Google Scholar 

  40. Gallie, S.R., Lucas, W.J. and Walbot, V. 1989. Visualizing mRNA expression in plant protoplasts: Factors influencing efficient mRNA uptake and translation. The Plant Cell 1: 301–311.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perl, A., Galili, S., Shaul, O. et al. Bacterial Dihydrodipicolinate Synthase and Desensitized Aspartate Kinase: Two Novel Selectable Markers for Plant Transformation. Nat Biotechnol 11, 715–718 (1993). https://doi.org/10.1038/nbt0693-715

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0693-715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing