Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Transgenic Tomato Plants Expressing the Tomato Yellow Leaf Curl Virus Capsid Protein are Resistant to the Virus

Abstract

The tomato yellow leaf curl virus(TYLCV) gene that encodes the capsid protein (VI) was placed under transcriptional control of the cauliflower mosaic virus 35S promoter and cloned into an Agrobacterium Ti-derived plasmid and used to transform plants from an interspecific tomato hybrid, Lycopersicon esculentum X L. pennellii (F1), sensitive to the TYLCV disease. When transgenic F1 plants, expressing the V1 gene, were inoculated with TYLCV using whiteflies fed on TYLCV-infected plants, they responded either as untransformed tomato or showed expression of delayed disease symptoms and recovery from the disease with increasingly more resistance upon repeated inoculation. Transformed plants that were as sensitive to inoculation as untransformed controls expressed the V1 gene at the RNA level only. All the transformed plants that recovered from disease expressed the TYLCV capsid protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohen, S. and Harpaz, I. 1964. Periodic, rather than continual acquisition of a new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Entomol. Exp. Appl. 7: 155–166.

    Article  Google Scholar 

  2. Czosnek, H., Navot, N. and Laterrot, H. 1990. Geographical distribution of tomato yellow leaf curl virus. A first survey using a specific DNA probe. Phytopathol. Medit. 29: 1–6.

    Google Scholar 

  3. Cohen, S. and Nitzany, F.E. 1966. Transmission and host range of the tomato yellow leaf curl virus. Phytopathology 56: 1127–1131.

    Google Scholar 

  4. Czosnek, H., Ber, R., Antignus, Y., Cohen, S., Navot, N. and Zamir, D. 1988 Isolation of the tomato yellow leaf curl virus — a geminivirus. Phytopathology 78: 508–512.

    Article  Google Scholar 

  5. Navot, N., Pichersky, E., Zeidan, M., Zamir, D. and Czosnek, H. 1991. Tomato yellow leaf curl virus: a whitefly transmitted geminivirus with a single genomic component. Virology 185: 151–161.

    Article  CAS  Google Scholar 

  6. Keyr-Pour, A., Bendahmane, M., Credi, S., Accoto, J.P., Matzeit, V. and Gronenborn, B. 1991. Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucl. Acids Res. 19: 6763–6769.

    Article  Google Scholar 

  7. Davies, J.W. and Stanley, J. 1989. Geminivirus genes and vectors. Trends Genet. 5: 77–81.

    Article  CAS  Google Scholar 

  8. Zakay, Y., Navot, N., Zeidan, M., Kedar, N., Rabinowitch, H.D., Czosnek, H. and Zamir, D. 1990. Screening of Lycopersicon accessions for resistance to tomato yellow leaf curl virus: presence of viral DNA and symptom development. Plant Dis. 75: 279–281.

    Article  Google Scholar 

  9. Pilowsky, M. and Cohen, S. 1990. Tolerance to tomato yellow leaf curl virus derived from Lycopersicon peruvianum . Plant Dis. 74: 248–250.

    Article  Google Scholar 

  10. Day, A.G., Bejerano, E.R., Buck, K.W., Burrell, M. and Lichtenstein, C.P. 1991. Expression of antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc. Natl. Acad. Sci. USA 88: 6721–6725.

    Article  CAS  Google Scholar 

  11. Stanley, J., Frischmuth, T. and Ellwood, S. 1990. Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proc. Natl. Acad. Sci. USA 87: 6291–6295.

    Article  CAS  Google Scholar 

  12. Beachy, R.N., Loesch-Fries, S. and Turner, N.E. 1990. Coat protein-mediated resistance against virus infection. Annu. Rev. Phytopathol. 28: 451–474.

    Article  CAS  Google Scholar 

  13. Gadani, F., Mansky, L.M., Medici, R., Miller, W.A. and Hill, J.H. 1990. Genetic engineering of plants for virus resistance. Arch. Virol. 115: 1–21.

    Article  CAS  Google Scholar 

  14. Hull, R. and Davies, J.W. 1992. Approaches to nonconventional control of plant virus diseases. Critical Rev. Plant Sci. 11: 17–33.

    Article  CAS  Google Scholar 

  15. Mayo, M.A. 1992. Organization of viral genomes: the potential of virus genes in the production of transgenic virus-resistant plants, p. 251–263. In: Biotechnology and Crop Improvement in Asia. Moss, J. P. (Ed.). International Crop Research Institute for the Semi-Arid Tropics, Patancheru, India.

    Google Scholar 

  16. Farinelli, L. and Malnoe, P. 1993. Coat protein gene-mediated resistance to potato virus Y in tobacco: Examination of the resistance mechanisms — Is the transgenic coat protein required for protection? Mol. Plant-Microbe Interact. 6: 284–292.

    Article  CAS  Google Scholar 

  17. Powell, P.A., Sanders, P.R., Turner, N., Fraley, R.T. and Beacy, R.N. 1990. Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology 175: 124–130.

    Article  CAS  Google Scholar 

  18. De Kouchkovsky, F., Jupin, I., Warting, L., Bendahmane, M., Kheyr-Pour, A., Jouanneau, F., Accotto, G.P., Matzeit, V. and Gronenborn, B. 1993. Molecular biology of tomato yellow leaf curl virus (TYLCV) and potential ways to control the disease, p. 227–238. In: Molecular Biology of Tomato. Yoder, J. I. (Ed.). Technomic Publishing, Lancaster.

    Google Scholar 

  19. Hoekema, A., Hirsch, P.R., Hooykass, P.J.J. and Schilperoort, R.A. A. 1983. A binary plant vector strategy based on separation of the Vir-and T-region of Agrobacterium tumefaciens Ti plasmid. Nature 303: 179–180.

    Article  CAS  Google Scholar 

  20. Holsters, M., de Waele, D., Depicker, A., Messens, E., Van Montagu, M. and Schell, J. 1978. Transfection and transformation of Agrobacterium tumefaciens . Mol. Gen. Genet. 163: 181–187.

    Article  CAS  Google Scholar 

  21. McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R. and Fraley, R. 1986. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens . Plant Cell Rep. 5: 81–84.

    Article  CAS  Google Scholar 

  22. Doyle, J.J. and Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  23. Beck, E., Ludwig, G., Auerswald, E.A., Reiss, B. and Schaller, H. 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19: 327–336.

    Article  CAS  Google Scholar 

  24. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharff, S.J., Higuchi, R.G., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 487–491.

    Article  CAS  Google Scholar 

  25. Navot, N., Zeidan, M., Pichersky, E., Zamir, D. and Czosnek, H. 1993. Use of the polymerase chain reaction to amplify tomato yellow leaf curl virus DNA from infected plants and viruliferous whiteflies. Phytopathology 82: 1199–1202.

    Article  Google Scholar 

  26. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning; A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

  27. Feinberg, A.P. and Vogelstein, B. 1984. A technique for radiolabeling DNA restriction endonuciease fragments to high specific activity. Anal. Biochem. 137: 266–269.

    Article  CAS  Google Scholar 

  28. Prescott, A. and Martin, C. 1987. A rapid method for the quantitative assessment of level specific mRNAs in plants. Plant Mol. Biol. Rep. 4: 219–224.

    Article  CAS  Google Scholar 

  29. Zeidan, M. and Czosnek, H. 1991. Acquisition of tomato yellow leaf curl virus by the whitefly Bemisia tabaci . J. Gen. Virol. 72: 2607–2614.

    Article  CAS  Google Scholar 

  30. Czosnek, H., Ber, R., Navot, N., Zamir, D., Antignus, Y. and Cohen, S. 1988. Detection of tomato yellow leaf curl virus in lysates of plants and insects by hybridization with a viral DNA probe. Plant Dis. 72: 949–951.

    Article  Google Scholar 

  31. Navot, N., Ber, R. and Czosnek, H. 1989. Rapid detection of tomato yellow leaf curl virus in squashes of plants and insect vectors. Phytopathology 79: 562–568.

    Article  Google Scholar 

  32. Laemmli, U.K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  33. Joisson, C., Dubs, M.C., Briand, J. and van Regenmortel, M. 1992 Detection of potyviruses with antisera to synthetic peptides. Res. Virol. 143: 167–178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunik, T., Salomon, R., Zamir, D. et al. Transgenic Tomato Plants Expressing the Tomato Yellow Leaf Curl Virus Capsid Protein are Resistant to the Virus. Nat Biotechnol 12, 500–504 (1994). https://doi.org/10.1038/nbt0594-500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0594-500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing