Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Efficient Production of Antibody Fragments by the Filamentous Fungus Trichoderma reesei

Abstract

We have engineered the filamentous fungus Trichoderma reesei to assemble and secrete immunologically authentic engineered Fab antibody fragments into the culture medium. A major improvement in yield was achieved by fusing the heavy Fd chain to the T. reesei cellulase, CBHI. The yields of secreted, immunologically active Fab and CBHI-Fab fusion were 1 mg/1 and 150 mg/1, respectively. The Fab fragment can be released from the fusion protein CBHI-Fab by an extracellular T. reesei protease. There was no detectable difference in affinity for the antigen between the engineered Fab and the idiotypic antibody.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Plückthun, A. 1991. Antibody engineering Advances from the use of Eschenchia coli expression systems. Bio/Technology 9: 545–551.

    Google Scholar 

  2. Wood, C.R., Boss, M.A., Kenten, J.H., Calvert, J.E., Roberts, N.A. and Emtage, J.S. 1985. The synthesis and in vivo assembly of functional antibodies in yeast. Nature 314: 446–449.

    Article  CAS  PubMed  Google Scholar 

  3. Horwitz, A.H., Chang, C.P., Better, M., Hellstrom, K.E. and Robinson, R.R. 1988. Secretion of functional antibody and Fab fragment from yeast cells. Proc. Natl. Acad. Sci. USA 85: 8678–8682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Edqvist, J., Keränen, S., Penttilä, M., Stråby, K.B. and Knowles, J.K.C. 1991. Production of functional IgM Fab fragments by Sacchartimyces cerevisiae. J. Biotechnol. 20: 291–300.

    Article  CAS  PubMed  Google Scholar 

  5. Carter, P., Kelley, R.F., Rodrigues, M.L., Snedecor, B., Covarrubias, M., Velligan, M.D., Wong, W.L.T., Rowland, A.M., Kotts, C.E., Carver, M.E., Yang, M., Bourell, J.H., Shepard, H.M. and Henner, D. 1992. High level Escherichia coli expression and production of a bivalent humanized antibody fragment. Bio/Technology 10: 163–167.

    CAS  Google Scholar 

  6. Durand, H., Clanet, M. and Tiraby, G. 1988. Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microb. Technol. 10: 341–345.

    Article  CAS  Google Scholar 

  7. Harkki, A., Uusitalo, J., Bailey, M., Penttilä, M. and Knowles, J. K.C. 1989. A novel fungal expression system: secretion of active calf chymosin from filamentous fungus Trichoderma reesei. Bio/Technology 7: 169–174.

    Google Scholar 

  8. Cullen, D., Gray, G.L., Wilson, L.J., Hayenga, K.J., Lamsa, M.H., Rey, M.W., Norton, S. and Berka, R.M. 1987. Controlled expression and secretion of bovine chymosin in Aspergillus nidulans. Bio/Technology 5: 369–376.

    CAS  Google Scholar 

  9. Ward, M., Wilson, L.J., Kodama, K.H., Rey, M.W. and Berka, R.M. 1990. Improved production of chymosin in Aspergillus by expression as a gluco-amylase-chymosin fusion. Bio/Technology 8: 435–440.

    CAS  Google Scholar 

  10. Contreras, R., Carrez, D., Kinghorn, J.R., Van den Hondel, C.A.M.J.J. and Fiers, W. 1991. Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6. Bio/Technology 9: 378–381.

    CAS  Google Scholar 

  11. Baron, M. and Tiraby, G. 1992. Efficient secretion of human lysozyme fused to the Sh ble phleomycin resistance protein by the fungus Tolypocladium geodes. J. Biotechnol. 24: 253–266.

    Article  CAS  PubMed  Google Scholar 

  12. Alfthan, K., Takkinen, K., Sizmann, D., Seppälä, I., Immonen, T., Vanne, L., Keränen, S., Kaartinen, M., Knowles, J.K.C. and Teeri, T.T. 1993. Efficient secretion of murine Fab fragments by Escherichia coli is determined by the first constant domain of the heavy chain. Gene, In press.

  13. Takkinen, K., Laukkanen, M.-L., Sizmann, D., Alfthan, K., Immonen, T., Vanne, L., Kaartinen, M., Knowles, J.K.C. and Teeri, T.T. 1991. An active single-chain antibody containing a cellulase linker domain is secreted by Escherichia coli. Prot. Engineering 4: 837–841.

    Article  CAS  Google Scholar 

  14. Kelly, J.M. and Hynes, M.J. 1985. Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J. 4: 475–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drocourt, D., Calmels, T.P.G., Reynes, J.P., Baron, M. and Tiraby, G. 1990. Cassettes of the Streptoalloteichus hindustans ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucl. Acids Res. 18: 4009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mattern, I.E., Punt, P.J., Unkles, S., Pouwels, P.H. and van den Hondel, C.A.M.J.J. 1987. Transformation of Aspergillus oryzae, p. 34. In: Abstracts of the 19th Lunteren Lectures on Molecular Genetics of Yeasts and Filamentous Fungi and its Impact on Biotechnology. Lunteren, The Netherlands.

    Google Scholar 

  17. Harkki, A., Mäntylä, A., Penttilä, M., Muttilainen, S., Bühler, R., Suominen, P., Knowles, J. and Nevalainen, H. 1991. Genetic engineering of Trichoderma to produce strains with novel cellulase profiles. Enzyme Microb. Technol. 13: 227–233.

    Article  CAS  PubMed  Google Scholar 

  18. Fägerstam, L.G., Petterson, L.G. and Engström, J. 1984. The primary structure of a 1,4-β-glucan cellobiohydrolase from the fungus Trichoderma reesei QM 9414. FEBS Lett. 167: 309–315.

    Article  Google Scholar 

  19. Eisen, H.N. (Ed.) 1964. Methods in Medical Research, Vol. X, p. 115. Year Book Medical Publishers, Chicago, IL.

    Google Scholar 

  20. Weir, D.M. 1978. Handbook of Experimental Immunology, 3rd edition, ch. 18. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  21. Goochee, C.F. and Monica, T. 1990. Environmental effects on protein glycosylation. Bio/Technology 8: 421–425.

    CAS  Google Scholar 

  22. Salovuori, I., Makarow, M., Rauvala, H., Knowles, J. and Kääriäinen, L. 1987. Low molecular weight high-mannose type glycans in a secreted protein of the filamentous fungus Trichoderma reesei. Bio/Technology 5: 152–156.

    CAS  Google Scholar 

  23. Calmels, T.P.G., Martin, F., Durand, H. and Tiraby, G. 1991. Proteolytic events in the processing of secreted proteins in fungi. J. Biotechnol. 17: 51–66.

    Article  CAS  PubMed  Google Scholar 

  24. Abuja, P.M., Schmuck, M., Pilz, I., Tomme, P., Claeyssens, M. and Ester-bauer, H. 1988. Structural and functional domains of cellobiohydrolase I from Trichoderma reesei. Eur. Biophys. J. 15: 339–342.

    Article  CAS  Google Scholar 

  25. Dunn-Coleman, N.S., Bloebaum, P., Berka, R.M., Bodie, E., Robinson, N., Armstrong, G., Ward, M., Przetak, M., Carter, G.L., LaCost, R., Wilson, L.J., Kodama, K.H., Baliu, E.F., Bower, B., Lamsa, M. and Heinsohn, H. 1991. Commercial levels of chymosin production by Aspergillus. Bio/Technology 9: 976–981.

    Article  CAS  Google Scholar 

  26. Kaartinen, M., Griffiths, G.M., Markham, A.F. and Milstein, C. 1983. mRNA sequences define an unusually restricted IgG response to 2-phenyloxazolone and its early diversification. Nature 304: 320–324.

    Article  CAS  PubMed  Google Scholar 

  27. Kaartinen, M., Solin, M.-L. and Mäkelä, O. 1989. ‘Allelic’ forms of immunoglobulin V genes in different strains of mice. EMBO J. 8: 1743–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nyyssönen, E., Keränen, S., Penttilä, M., Takkinen, K. and Knowles, J.K.C. 1992. Immunoglobulin production by Trichoderma. PCT. WO 92/01797.

  29. Penttilä, M., Nevalainen, H., Rättö, M., Salminen, E. and Knowles, J.K.C. 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61: 155–164.

    Article  PubMed  Google Scholar 

  30. Kennedy, D.M. and Challacombe, S.J. 1988. ELISA and Other Solid-Phase Immunoassays. Theoretical and Practical Aspects. John Wiley and Sons, New York.

    Google Scholar 

  31. Mäkelä, O., Kaartinen, M., Pelkonen, J.L. and Karjalainen, K. 1978. Inheritance of antibody specificity V. Anti-2-phenyloxazolone in the mouse. J. Exp. Med. 148: 1644–1660.

    Article  Google Scholar 

  32. IUPAC (International Union of Pure and Applied Chemistry). 1987. Measurement of cellulase activities. Pure and Appl. Chem. 59: 257–268.

  33. Harlow, E. and Lane, D. 1988. Antibodies. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  34. Wetlaufer, D.B. 1962. Ultraviolet spectra of proteins and amino acids. Adv. Protein Chem. 17: 303–390.

    Article  CAS  Google Scholar 

  35. Baumann, M. 1990. Comparative gas phase and pulsed liquid phase sequencing on a modified Applied Biosystems 477 A sequencer. Anal. Biochem. 190: 198–208.

    Article  CAS  PubMed  Google Scholar 

  36. Van Tilbeurgh, H., Loontiens, F.G., De Bruyne, C.K. and Claeyssens, M. 1988. Fluorogenic and chromogenic glycosides as substrates and ligands of carbohydrates. Methods in Enzymol. 160: 45–59.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyyssönen, E., Penttilä, M., Harkki, A. et al. Efficient Production of Antibody Fragments by the Filamentous Fungus Trichoderma reesei. Nat Biotechnol 11, 591–595 (1993). https://doi.org/10.1038/nbt0593-591

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0593-591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing