Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineered and total biosynthesis of fungal specialized metabolites

Abstract

Filamentous fungi produce a very wide range of complex and often bioactive metabolites, demonstrating their inherent ability as hosts of complex biosynthetic pathways. Recent advances in molecular sciences related to fungi have afforded the development of new tools that allow the rational total biosynthesis of highly complex specialized metabolites in a single process. Increasingly, these pathways can also be engineered to produce new metabolites. Engineering can be at the level of gene deletion, gene addition, formation of mixed pathways, engineering of scaffold synthases and engineering of tailoring enzymes. Combination of these approaches with hosts that can metabolize low-value waste streams opens the prospect of one-step syntheses from garbage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures and biological activities of key fungal specialized metabolites.
Fig. 2: Overview of principles and similarity of total biosynthesis to chemical total synthesis.
Fig. 3: Specific examples of routes to engineered compounds via truncated pathways.
Fig. 4: Diversification of tropolone sesquiterpenoids.
Fig. 5: Examples of core engineering.
Fig. 6: Engineering the biosynthesis of fungal PKS–NRPS metabolites in the tenellin series.
Fig. 7: Engineering tailoring enzymes.
Fig. 8: Use of stereoselective enzymatic oxidative dearomatization for the highly efficient synthesis of fungal natural products.

Similar content being viewed by others

References

  1. Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).

    Article  Google Scholar 

  2. de Mattos-Shipley, K. M. et al. The good, the bad and the tasty: the many roles of mushrooms. Stud. Mycol. 85, 125–157 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hamed, R. B. et al. The enzymes of β-lactam biosynthesis. Nat. Prod. Rep. 30, 21–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Covvey, J. R. & Guarascio, A. J. Clinical use of lefamulin: a first-in-class semisynthetic pleuromutilin antibiotic. J. Intern. Med. 291, 51–63 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Chooi, Y.-H., Cacho, R. & Tang, Y. Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. Chem. Biol. 17, 483–494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sauter, H., Steglich, W. & Anke, T. Strobilurins: evolution of a new class of active substances. Angew. Chem. Int. Ed. 38, 1328–1349 (1999).

    Article  Google Scholar 

  7. Wang, J. et al. Structural basis for the biosynthesis of lovastatin. Nat. Commun. 12, 867 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuhnert, E. et al. Enfumafungin synthase represents a novel lineage of fungal triterpene cyclases. Environ. Microbiol. 20, 3325–3342 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wring, S. A. et al. Preclinical pharmacokinetics and pharmacodynamic target of SCY-078, a first-in-class orally active antifungal glucan synthesis inhibitor, in murine models of disseminated candidiasis. Antimicrob. Agents Chemother. 61, e02068-16 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lebe, K. E. & Cox, R. J. Oxidative steps during the biosynthesis of squalestatin S1. Chem. Sci. 10, 1227–1231 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Luo, H. et al. Genes and evolutionary fates of the amanitin biosynthesis pathway in poisonous mushrooms. Proc. Natl Acad. Sci. USA 119, e2201113119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Minto, R. E. & Townsend, C. A. Enzymology and molecular biology of aflatoxin biosynthesis. Chem. Rev. 97, 2537–2556 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Matsuda, Y., Wakimoto, T., Mori, T., Awakawa, T. & Abe, I. Complete biosynthetic pathway of anditomin: nature’s sophisticated synthetic route to a complex fungal meroterpenoid. J. Am. Chem. Soc. 136, 15326–15336 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, C. et al. Diversely functionalised cytochalasins through mutasynthesis and semi-synthesis. Chem. Eur. J. 26, 13578–13583 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Nett, R. S. et al. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nat. Chem. Biol. 13, 69–74 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chaverra-Muñoz, L., Briem, T. & Hüttel, S. Optimization of the production process for the anticancer lead compound illudin M: improving titers in shake-flasks. Microb. Cell Fact. 21, 98 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hsiao, C.-J. et al. Pycnidione, a fungus-derived agent, induces cell cycle arrest and apoptosis in A549 human lung cancer cells. Chem. Biol. Interact. 197, 23–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, W. et al. Compartmentalized biosynthesis of mycophenolic acid. Proc. Natl Acad. Sci. USA 116, 13305–13310 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, X. et al. Cyclosporine biosynthesis in Tolypocladium inflatum benefits fungal adaptation to the environment. mBio 9, e01211-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fricke, J., Blei, F. & Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed. 56, 12352–12355 (2017).

    Article  CAS  Google Scholar 

  21. Wong, G. et al. Reconstituting the complete biosynthesis of D-lysergic acid in yeast. Nat. Commun. 13, 712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pathak, A., Nowell, R. W., Wilson, C. G., Ryan, M. J. & Barraclough, T. G. Comparative genomics of Alexander Fleming’s original Penicillium isolate (IMI 15378) reveals sequence divergence of penicillin synthesis genes. Sci. Rep. 10, 15705 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Foy, N. J. & Pronin, S. V. Synthesis of pleuromutilin. J. Am. Chem. Soc. 144, 10174–10179 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goethe, O., DiBello, M. & Herzon, S. B. Total synthesis of structurally diverse pleuromutilin antibiotics. Nat. Chem. 14, 1270–1277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roberts, A. A., Ryan, K. S., Moore, B. S. & Gulder, T. A. M. in Natural Products via Enzymatic Reactions (ed. Piel, J.) 149–203 (Springer, 2010).

  26. Kahlert, L., Schotte, C. & Cox, R. J. Total mycosynthesis: rational bioconstruction and bioengineering of fungal natural products. Synthesis 53, 2381–2394 (2021).

    Article  CAS  Google Scholar 

  27. Boecker, S., Zobel, S., Meyer, V. & Süssmuth, R. D. Rational biosynthetic approaches for the production of new-to-nature compounds in fungi. Fungal Genet. Biol. 89, 89–101 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Alberti, F., Foster, G. D. & Bailey, A. M. Natural products from filamentous fungi and production by heterologous expression. Appl. Microbiol. Biotechnol. 101, 493–500 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. He, Y. et al. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol. Adv. 36, 739–783 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Bailey, A. M. et al. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Sci. Rep. 6, 25202 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shenouda, M. L., Ambilika, M., Skellam, E. & Cox, R. J. Heterologous expression of secondary metabolite genes in Trichoderma reesei for waste valorization. J. Fungi 8, 355 (2022).

    Article  CAS  Google Scholar 

  32. Smith, D. J., Burnham, M. K. R., Edwards, J., Earl, A. J. & Turner, G. Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillium chrysogenum. Biotechnology 8, 39–41 (1990).

    CAS  PubMed  Google Scholar 

  33. Houbraken, J., Frisvad, J. C. & Samson, R. A. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2, 87–95 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sakai, K., Kinoshita, H., Shimizu, T. & Nihira, T. Construction of a citrinin gene cluster expression system in heterologous Aspergillus oryzae. J. Biosci. Bioeng. 106, 466–472 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Song, Z. et al. Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae. Chem. Sci. 6, 4837–4845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pahirulzaman, K. A. K., Williams, K. & Lazarus, C. M. A toolkit for heterologous expression of metabolic pathways in Aspergillus oryzae. Methods Enzymol. 517, 241–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Nofiani, R. et al. Strobilurin biosynthesis in Basidiomycete fungi. Nat. Commun. 9, 3940 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Terlouw, B. R. et al. MIBiG 3.0: a community-driven effort to annotate experimentally validated biosynthetic gene clusters. Nucleic Acids Res. 51, D603–D610 (2022).

    Article  PubMed Central  Google Scholar 

  40. Gilchrist, C. L. M. et al. cblaster: a remote search tool for rapid identification and visualization of homologous gene clusters. Bioinform. Adv. 1, vbab016 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alberti, F. et al. Biosynthesis of pleuromutilin congeners using an Aspergillus oryzae expression platform. Chem. Sci. 14, 3826–3833 (2022).

    Article  Google Scholar 

  42. Tagami, K. et al. Reconstitution of biosynthetic machinery for indole-diterpene paxilline in Aspergillus oryzae. J. Am. Chem. Soc. 135, 1260–1263 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Tagami, K. et al. Rapid reconstitution of biosynthetic machinery for fungal metabolites in Aspergillus oryzae: total biosynthesis of aflatrem. ChemBioChem 15, 2076–2080 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Robinson, S. L. & Panaccione, D. G. Heterologous expression of lysergic acid and novel ergot alkaloids in Aspergillus fumigatus. Appl. Environ. Microbiol. 80, 6465–6472 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hoefgen, S. et al. Facile assembly and fluorescence-based screening method for heterologous expression of biosynthetic pathways in fungi. Metab. Eng. 48, 44–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto, S. et al. Elucidation of late-stage biosynthesis of phomoidride: proposal of cyclization mechanism affording characteristic nine-membered ring of fungal dimeric anhydride. J. Am. Chem. Soc. 144, 20998–21004 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Williams, K. et al. Heterologous production of fungal maleidrides reveals the cryptic cyclization involved in their biosynthesis. Angew. Chem. Int. Ed. 55, 6784–6788 (2016).

    Article  CAS  Google Scholar 

  48. Fukaya, M. et al. Total biosynthesis of melleolides from basidiomycota fungi: mechanistic analysis of the multi-functional GMC oxidase Mld7. Angew. Chem. Int. Ed. 62, e202308881 (2023).

    Article  CAS  Google Scholar 

  49. Tazawa, A. et al. Total biosynthesis of brassicicenes: identification of a key enzyme for skeletal diversification. Org. Lett. 20, 6178–6182 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Liu, C. et al. Efficient reconstitution of basidiomycota diterpene erinacine gene cluster in ascomycota host Aspergillus oryzae based on genomic DNA sequences. J. Am. Chem. Soc. 141, 15519–15523 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Narita, K. et al. Total biosynthesis of antiangiogenic agent (−)-terpestacin by artificial reconstitution of the biosynthetic machinery in Aspergillus oryzae. J. Org. Chem. 83, 7042–7048 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Fujii, R. et al. Total biosynthesis of diterpene aphidicolin, a specific inhibitor of DNA polymerase α: heterologous expression of four biosynthetic genes in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 75, 1813–1817 (2014).

    Article  Google Scholar 

  53. Halo, L. M. et al. Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the entomopathogenic fungus Beauveria bassiana. J. Am. Chem. Soc. 130, 17988–17996 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Z. et al. Enzyme-catalyzed inverse-electron demand Diels–Alder reaction in the biosynthesis of antifungal ilicicolin H. J. Am. Chem. Soc. 141, 5659–5663 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kahlert, L., Bassiony, E. F., Cox, R. J. & Skellam, E. J. Diels–Alder reactions during the biosynthesis of sorbicillinoids. Angew. Chem. Int. Ed. 59, 5816–5822 (2020).

    Article  CAS  Google Scholar 

  56. He, Y. & Cox, R. J. The molecular steps of citrinin biosynthesis in fungi. Chem. Sci. 7, 2119–2127 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nielsen, M. et al. Heterologous reconstitution of the intact geodin gene cluster in Aspergillus nidulans through a simple and versatile PCR based approach. PLoS ONE 8, e72871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sakai, K., Kinoshita, H. & Nihira, T. Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Appl. Microbiol. Biotechnol. 93, 2011–2022 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Kasahara, K. et al. Solanapyrone synthase, a possible Diels–Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. ChemBioChem 11, 1245–1252 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Zhong, Y.-J. et al. Complex interplay and catalytic versatility of tailoring enzymes for efficient and selective biosynthesis of fungal mycotoxins. J. Agric. Food Chem. 71, 311–319 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Schor, R., Schotte, C., Wibberg, D., Kalinowski, J. & Cox, R. J. Three previously unrecognised classes of biosynthetic enzymes revealed during the production of xenovulene A. Nat. Commun. 9, 1963 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Leete, E. et al. The use of carbon-13 nuclear magnetic resonance to establish that the biosynthesis of tenellin involves an intramolecular rearrangement of phenylalanine. Tetrahedron Lett. 16, 4103–4106 (1975).

    Article  Google Scholar 

  63. Heneghan, M. N. et al. First heterologous reconstruction of a complete functional fungal biosynthetic multigene cluster. ChemBioChem 11, 1508–1512 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Rigby, J. H. & Qabar, M. Convergent total synthesis of (±)-tenellin. J. Org. Chem. 54, 5852–5853 (1989).

    Article  CAS  Google Scholar 

  65. Bai, T. et al. Structural diversification of andiconin-derived natural products by α-ketoglutarate-dependent dioxygenases. Org. Lett. 22, 4311–4315 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Li, L. & Cox, R. J. Stereochemical and biosynthetic rationalisation of the tropolone sesquiterpenoids. J. Fungi 8, 929 (2022).

    Article  CAS  Google Scholar 

  67. Ainsworth, A. M. et al. Xenovulene A, a novel GABA-benzodiazepine receptor binding compound produced by Acremonium strictum. J. Antibiot. 48, 568–573 (1995).

    Article  CAS  Google Scholar 

  68. Harris, G. H. et al. Isolation and structure determination of pycnidione, A novel bistropolone stromelysin inhibitor from a Phoma sp. Tetrahedron 49, 2139–2144 (1993).

    Article  CAS  Google Scholar 

  69. Mayerl, F. et al. Eupenifeldin, a novel cytotoxic bistropolone from Eupenicillium brefeldianum. J. Antibiot. 46, 1082–1088 (1993).

    Article  CAS  Google Scholar 

  70. Zhai, Y. et al. Identification of the gene cluster for bistropolone-humulene meroterpenoid biosynthesis in Phoma sp. Fungal Genet. Biol. 129, 7–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, J. et al. Tandem intermolecular [4 + 2] cycloadditions are catalysed by glycosylated enzymes for natural product biosynthesis. Nat. Chem. 15, 1083–1090 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Al Subeh, Z. Y. et al. Delivery of eupenifeldin via polymer-coated surgical buttresses prevents local lung cancer recurrence. J. Control. Release 331, 260–269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davison, J. et al. Genetic, molecular, and biochemical basis of fungal tropolone biosynthesis. Proc. Natl Acad. Sci. USA 109, 7642–7647 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, Q. et al. Enzymatic intermolecular hetero-Diels–Alder reaction in the biosynthesis of tropolonic sesquiterpenes. J. Am. Chem. Soc. 141, 14052–14056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bergmann, T. C., Menssen, M., Schotte, C., Cox, R. J. & Lee-Thedieck, C. Bioactive effects of natural and novel unnatural tropolone sesquiterpenoids in a murine cell model of renal interstitial fibroblasts. Preprint at bioRxiv https://doi.org/10.1101/2023.07.19.549646 (2023).

  76. Schotte, C., Li, L., Wibberg, D., Kalinowski, J. & Cox, R. J. Synthetic biology driven biosynthesis of unnatural tropolone sesquiterpenoids. Angew. Chem. Int. Ed. 59, 23870–23878 (2020).

    Article  CAS  Google Scholar 

  77. Schotte, C., Lukat, P., Deuschmann, A., Blankenfeldt, W. & Cox, R. J. Understanding and engineering the stereoselectivity of humulene synthase. Angew. Chem. Int. Ed. 60, 20308–20312 (2021).

    Article  CAS  Google Scholar 

  78. Xu, H., Schotte, C., Cox, R. J. & Dickschat, J. S. Stereochemical characterisation of the non-canonical α-humulene synthase from Acremonium strictum. Org. Biomol. Chem. 19, 8482–8486 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Bemis, C. Y. et al. Total synthesis and computational investigations of sesquiterpene-tropolones ameliorate stereochemical inconsistencies and resolve an ambiguous biosynthetic relationship. J. Am. Chem. Soc. 143, 6006–6017 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Patel, K. D., MacDonald, M. R., Ahmed, S. F., Singh, J. & Gulick, A. M. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat. Prod. Rep. 40, 1550–1582 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lou, T. et al. Structural insights into three sesquiterpene synthases for the biosynthesis of tricyclic sesquiterpenes and chemical space expansion by structure-based mutagenesis. J. Am. Chem. Soc. 145, 8474–8485 (2023).

    CAS  Google Scholar 

  82. Cox, R. J. & Skellam, E. J. in Comprehensive Natural Products III 3rd edn, Vol. 1 (eds Liu, H. & Begley, T.) 266–312 (Elsevier, 2020).

  83. Cox, R. J. Curiouser and curiouser: progress in understanding the programming of iterative highly-reducing polyketide synthases. Nat. Prod. Rep. 40, 9–27 (2022).

    Article  Google Scholar 

  84. Xu, Y. et al. Characterization of the biosynthetic genes for 10,11-dehydrocurvularin, a heat shock response-modulating anticancer fungal polyketide from Aspergillus terreus. Appl. Environ. Microbiol. 79, 2038–2047 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu, Y. et al. Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases. Proc. Natl Acad. Sci. USA 111, 12354–12359 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bai, J. et al. Diversity-oriented combinatorial biosynthesis of hybrid polyketide scaffolds from azaphilone and benzenediol lactone biosynthons. Org. Lett. 18, 1262–1265 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu, Y. et al. Rational reprogramming of fungal polyketide first-ring cyclization. Proc. Natl Acad. Sci. USA 110, 5398–5403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fisch, K. M. Biosynthesis of natural products by microbial iterative hybrid PKS–NRPS. RSC Adv. 3, 18228–18247 (2013).

    Article  CAS  Google Scholar 

  89. Minami, A., Ugai, T., Ozaki, T. & Oikawa, H. Predicting the chemical space of fungal polyketides by phylogeny-based bioinformatics analysis of polyketide synthase-nonribosomal peptide synthetase and its modification enzymes. Sci. Rep. 10, 13556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nielsen, M. L. et al. Linker flexibility facilitates module exchange in fungal hybrid PKS-NRPS engineering. PLoS ONE 11, e0161199 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xu, W., Cai, X., Jung, M. E. & Tang, Y. Analysis of intact and dissected fungal polyketide synthase-nonribosomal peptide synthetase in vitro and in Saccharomyces cerevisiae. J. Am. Chem. Soc. 132, 13604–13607 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fisch, K. M. et al. Rational domain swaps decipher programming in fungal highly reducing polyketide synthases and resurrect an extinct metabolite. J. Am. Chem. Soc. 133, 16635–16641 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Yang, X.-L. et al. Molecular basis of methylation and chain-length programming in a fungal iterative highly reducing polyketide synthase. Chem. Sci. 10, 8478–8489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cox, R. Oxidative rearrangements during fungal biosynthesis. Nat. Prod. Rep. 31, 1405–1424 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Zwick, C. R. & Renata, H. Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis. Nat. Prod. Rep. 37, 1065–1079 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chakrabarty, S., Romero, E. O., Pyser, J. B., Yazarians, J. A. & Narayan, A. R. H. Chemoenzymatic total synthesis of natural products. Acc. Chem. Res. 54, 1374–1384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pyser, J. B. et al. Stereodivergent, chemoenzymatic synthesis of azaphilone natural products. J. Am. Chem. Soc. 141, 18551–18559 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Renata, H., Wang, Z. J. & Arnold, F. H. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. 54, 3351–3367 (2015).

    Article  CAS  Google Scholar 

  99. Awakawa, T., Mori, T., Ushimaru, R. & Abe, I. Structure-based engineering of α-ketoglutarate dependent oxygenases in fungal meroterpenoid biosynthesis. Nat. Prod. Rep. 40, 46–61 (2022).

    Article  Google Scholar 

  100. Tao, H. et al. Molecular insights into the unusually promiscuous and catalytically versatile Fe(II)/α-ketoglutarate-dependent oxygenase SptF. Nat. Commun. 13, 95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nakashima, Y. et al. Structure function and engineering of multifunctional non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis. Nat. Commun. 9, 104 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Baker Dockrey, S. A., Lukowski, A. L., Becker, M. R. & Narayan, A. R. H. Biocatalytic site- and enantioselective oxidative dearomatization of phenols. Nat. Chem. 10, 119–125 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. al Fahad, A. et al. Oxidative dearomatisation: the key step of sorbicillinoid biosynthesis. Chem. Sci. 5, 523–527 (2013).

    Article  Google Scholar 

  104. Abood, A. et al. Kinetic characterisation of the FAD dependent monooxygenase TropB and investigation of its biotransformation potential. RSC Adv. 5, 49987–49995 (2015).

    Article  CAS  Google Scholar 

  105. Chiang, Y.-M. et al. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc. 131, 2965–2970 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zabala, A. O., Xu, W., Chooi, Y.-H. & Tang, Y. Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem. Biol. 19, 1049–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Benítez, A. R. et al. Structural basis for selectivity in flavin-dependent monooxygenase-catalyzed oxidative dearomatization. ACS Catal. 9, 3633–3640 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chiang, C.-H. et al. Deciphering the evolution of flavin-dependent monooxygenase stereoselectivity using ancestral sequence reconstruction. Proc. Natl Acad. Sci. USA 120, e2218248120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schor, R. & Cox, R. Classic fungal natural products in the genomic age: the molecular legacy of Harold Raistrick. Nat. Prod. Rep. 35, 230–256 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Cox, R. J. & Gulder, T. A. M. Introduction to engineering the biosynthesis of fungal natural products. Nat. Prod. Rep. 40, 7–8 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhu, X. et al. Synthetic biology of plant natural products: from pathway elucidation to engineered biosynthesis in plant cells. Plant Commun. 2, 100229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Skellam, E. Subcellular localization of fungal specialized metabolites. Fungal Biol. Biotechnol. 9, 11 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chiang, C.-Y., Ohashi, M. & Tang, Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Nat. Prod. Rep. 40, 89–127 (2022).

    Article  Google Scholar 

  115. Barreiro, C. & García-Estrada, C. Proteomics and Penicillium chrysogenum: unveiling the secrets behind penicillin production. J. Proteom. 198, 119–131 (2019).

    Article  CAS  Google Scholar 

  116. Feng, J., Hauser, M., Cox, R. J. & Skellam, E. Engineering Aspergillus oryzae for the heterologous expression of a bacterial modular polyketide synthase. J. Fungi 7, 1085 (2021).

    Article  CAS  Google Scholar 

  117. Chiang, Y.-M. et al. Development of genetic dereplication strains in Aspergillus nidulans results in the discovery of aspercryptin. Angew. Chem. Int. Ed. 55, 1662–1665 (2015).

    Article  Google Scholar 

  118. Gressler, M., Hortschansky, P., Geib, E. & Brock, M. A new high-performance heterologous fungal expression system based on regulatory elements from the Aspergillus terreus terrein gene cluster. Front. Microbiol. 6, 184 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tomico-Cuenca, I., Mach, R. L., Mach-Aigner, A. R. & Derntl, C. An overview on current molecular tools for heterologous gene expression in Trichoderma. Fungal Biol. Biotechnol. 8, 11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Floudas, D. et al. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336, 1715–1719 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Porter, R. et al. Degradation of polypropylene by fungi Coniochaeta hoffmannii and Pleurostoma richardsiae. Microbiol. Res. 277, 127507 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Temporiti, M. E. E., Nicola, L., Nielsen, E. & Tosi, S. Fungal enzymes involved in plastics biodegradation. Microorganisms 10, 1180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee, H. & Romero, J. Climate change 2023: synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Intergovernmental Panel on Climate Change, 2023).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell J. Cox.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Biosynthetic gene cluster (BGC)

A co-located group of genes that encode the biosynthesis and transport of a particular specialized metabolite.

Gene expression

The process by which a gene is transcribed into messenger RNA and translated by the ribosome into protein.

Gene knockout

The precise deletion or disruption of a gene to ensure that its encoded protein cannot be produced.

Heterologous expression

Gene expression that is performed in a non-native host organism.

Host organism

An engineered organism in which BGCs of interest are expressed. Host organisms often have properties beneficial for fermentation or genetic engineering.

Intron

A short sequence of non-coding nucleotides that must be removed (spliced) from messenger RNA to create the correct coding sequence for translation.

Mutasynthesis

A process in which a mutation (usually a gene knockout) is chemically complemented by addition of a synthetic precursor or pathway intermediate to produce a new metabolite.

Off-loading domain

Many synth(et)ases process substrates that are covalently attached via a thiolester or ester linkage. Off-loading domains hydrolyse or transesterify completed metabolites and free-up the synth(et)ase for another round of synthesis.

Precursor-directed synthesis

Addition of a chemical precursor to a fermentation so that it is incorporated into the biosynthetic pathway, usually to produce a new specialized metabolite.

Promoter sequence

A sequence of DNA upstream of biosynthetic genes that is bound by a transcription factor.

Refactoring

The process of moving genes to a heterologous host while simultaneously replacing their native promoters with new promoters with desired properties suitable for use in the heterologous host.

Synthase

A biosynthetic protein that builds the skeleton of a specialized metabolite without using adenosine triphosphate (ATP).

Synthetase

A biosynthetic protein that builds the skeleton of a specialized metabolite that requires the use of adenosine triphosphate (ATP).

Tailoring

Biosynthetic processes that occur after the action of a synth(et)ase. Tailoring often incudes redox processes, cyclization, alkylation and rearrangements.

Titre

A measure of the productivity of a fermentation usually expressed in (m)g L1 or (m)g Kg1 of the desired product.

Total biosynthesis

The biological equivalent of total chemical synthesis — the rational production of organic materials by the manipulation of the biosynthetic machinery.

Wild-type organism

Also referred to as the donor organism, this is the organism in which BGCs of interest are found. Wild-type or donor organisms are often unsuitable for metabolite production, scale-up or genetic engineering.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, R.J. Engineered and total biosynthesis of fungal specialized metabolites. Nat Rev Chem 8, 61–78 (2024). https://doi.org/10.1038/s41570-023-00564-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-023-00564-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing