Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences

Abstract

PDZ domains are multifunctional protein-interaction motifs that often bind to the C-terminus of protein targets. Nitric oxide (NO), an endogenous signaling molecule, plays critical roles in nervous, immune, and cardiovascular function. Although there are numerous physiological functions for neuron-derived NO, produced primarily by the neuronal NO synthase (nNOS), excess nNOS activity mediates brain injury in cerebral ischemia and in animal models of Parkinson's disease. Subcellular localization of nNOS activity must therefore be tightly regulated. To determine ligands for the PDZ domain of nNOS, we screened 13 billion distinct peptides and found that the nNOS-PDZ domain binds tightly to peptides ending Asp-X-Val. This differs from the only known (ThiYSer)-X-Val consensus that interacts with PDZ domains from PSD-95. Preference for Asp at the -2 peptide position is mediated by Tyr-77 of nNOS. A Y77D78 to H77E7B substitution changes the binding specificity from Asp-X-Val to Thr-X-Val. Guided by the Asp-X-Val consensus, candidate nNOS interacting proteins have been identified including glutamate and melatonin receptors. Our results demonstrate that PDZ domains have distinct peptide binding specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cho, K.O., Hunt, C.A., and Kennedy, M.B. 1992. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9: 929–42.

    Article  CAS  Google Scholar 

  2. Gomperts, S.N. 1996. Clustering membrane proteins: it is all coming together with the PSD-95/SAP90 protein family. Cell 84: 659–662.

    Article  CAS  Google Scholar 

  3. Ponting, C.P. and Phillips, C. 1995. DHR domains in syntrophins, neuronal NO syntheses and other intracellular proteins. Trends Biol. Sci, 20: 102–103.

    Article  CAS  Google Scholar 

  4. Kim, E., et al. 1995. Clustering of Shaker-type K+ channels by direct interaction with the PSD-95/SAP90 family of membrane-associated guanylate kinases. Nature 378: 85–88.

    Article  CAS  Google Scholar 

  5. Kornau, H.-C., Schenker, L.T., Kennedy, M.B., and Seeburg, P.H. 1995. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269: 1737–1740.

    Article  CAS  Google Scholar 

  6. Sheng, M. 1996. PDZs and receptor/channel clustering: rounding up the latest suspects. Neuron 17: 575–578.

    Article  CAS  Google Scholar 

  7. Doyle, D.A., Lee, A., Lewis, J., Kim, E., Sheng, M., and MacKinnon, R. 1996. Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptlde recognition by PDZ. Cell 85: 1067–1076.

    Article  CAS  Google Scholar 

  8. Cabral, J.H.M., et al. 1996. Crystal structure of a PDZ domain. Nature 382: 649–652.

    Article  CAS  Google Scholar 

  9. Muller, B.M., Kistner, U., Kindler, S., Chung, W.K., Kuhlendahl, S., Fenster, S.D., et al. 1996. SAP102, a hovel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17: 255–265.

    Article  CAS  Google Scholar 

  10. Cohen, N.A., Brenman, J.E., Snyder, S.H., and Bredt, D.S. 1996. Binding of the inward rectifier K+ channel to PSD-95 Is regulated by protein kinase A phosphorylation. Neuron 17: 759–767.

    Article  CAS  Google Scholar 

  11. Bredt, D.S. and Snyder, S.H. 1994. Nitric oxide: a physiologic messenger molecule. Ann. Rev. Biochem. 63: 175–195.

    Article  CAS  Google Scholar 

  12. Marletta, M.A. 1993. Nitric oxide synthase structure and mechanism. J. Biol. Chem. 268: 12231–4.

    CAS  PubMed  Google Scholar 

  13. Moncada, S. and Higgs, A. 1993. L-arginine-nitric oxide pathway. N. Engl. J. Med. 329: 2002–2012.

    Article  CAS  Google Scholar 

  14. Dawson, T.M., Dawson, V.L., and Snyder, S.H. 1992. A novel neuronal messenger molecule in brain: the free radical, nitric oxide [see comments]. Ann. Neurol. 32: 297–311.

    Article  CAS  Google Scholar 

  15. Hantraye, P., Brouillet, E., Ferrante, R., Palfi, S., Dolan, R., Matthews, R.T., et al. 1996. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nature Medicine 2: 1017–1021.

    Article  CAS  Google Scholar 

  16. Huang, Z., Huang, P.L., Panahian, N., Dalkara, T., Fishman, M.C., and Moskowitz, M.A. 1994. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265: 1883–1885.

    Article  CAS  Google Scholar 

  17. Jeffrey, S.R. and Snyder, S.H. 1996. PIN: An associated protein inhibitor of neuronal nitric oxide synthase. Science 274: 774–777.

    Article  Google Scholar 

  18. Aoki, C., Fenstemaker, S., Lubin, M., and Go, C.G. 1993. Nitric oxide synthase in the visual cortex of monocular monkeys as revealed by light and electron microscopic immunocytochemistry. Brain Res. 620: 97–113.

    Article  CAS  Google Scholar 

  19. Brenman, J.E., Chao, D.S., Xia, H., Aldape, K., and Bredt, D.S. 1995. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82: 743–752.

    Article  CAS  Google Scholar 

  20. Brenman, J.E., Chao, D.S., Gee, S.H., McGee, A.W., Craven, S.E., Santillano, D.R., et al. 1996. Interaction of nitric oxide synthase with the synaptic density protein PSD-95 and α-1 syntrophin mediated by PDZ motifs. Cell 84: 757–767.

    Article  CAS  Google Scholar 

  21. Brenman, J.E., Christopherson, K.S., Craven, S.E., McGee, A.W., and Bredt, D.S. 1996. Cloning and characterization of postsynaptic density 93, PSD-93, a nitric oxide synthase interacting protein. J. Neurosci. 16: 7407–7415.

    Article  CAS  Google Scholar 

  22. Chao, D.S., Gorospe, R.M., Brenman, J.E., Rafael, J.A., Peters, M.F., Froehner, S.C., et al. 1996. Selective loss of sarcolemmal nitric oxide synthase in Becker muscular dystrophy. J. Exp. Med. 184: 609–618.

    Article  CAS  Google Scholar 

  23. Sparks, A.B., Adey, N.B., Quilliam, L.A., Thorn, J.M., and Kay, B.K. 1995. Screening phage-displayed random peptide libraries for SH3 ligands. Methods Enzymol. 255: 498–509.

    Article  CAS  Google Scholar 

  24. Zhou, S. and Cantley, L.C. 1995. SH2 domain specificity determination using oriented phosphopeptlde library. Methods Enzymol. 254: 523–535.

    Article  CAS  Google Scholar 

  25. Gallop, M., Barrett, R., Dower, W., Fodor, S., and Gordon, E. 1994. Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J. Med. Chem. 37: 1233–1251.

    Article  CAS  Google Scholar 

  26. Cull, M.G., Miller, J.F., and Schatz, P.J. 1992. Screening for receptor ligands using large libraries of peptides linked to the C terminus of the lac represser. Proc. Natl. Acad. Scl. USA 89: 1865–1869.

    Article  CAS  Google Scholar 

  27. Niethammer, M., Kim, E., and Sheng, M. 1996. Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases. J. Neurosci. 16: 2157–2163.

    Article  CAS  Google Scholar 

  28. Bredt, D.S., Hwang, P.M., Glatt, C.E., Lowenstein, C., Reed, R.R., and Snyder, S.H. 1991. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351: 714–718.

    Article  CAS  Google Scholar 

  29. Schatz, P.J., Cull, M.G., Martin, E.L., and Gates, C.M. 1996. Screening of peptide libraries linked to lac represser. Methods Enzymol. 267: 171–191.

    Article  CAS  Google Scholar 

  30. Garthwaite, J., Charles, S.L., and Chess-Williams, R. 1988. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336: 385–388.

    Article  CAS  Google Scholar 

  31. Vesely, D.L. 1981. Melatonin enhances guanylate cyclase activity in a variety of tissues. Mol. Cell Biochem. 35: 55–58.

    Article  CAS  Google Scholar 

  32. Garthwaite, J. and Boulton, C.L. 1995. Nitric oxide signaling in the central nervous system. Annu. Rev. Physlol. 57: 683–706.

    Article  CAS  Google Scholar 

  33. Richarme, G. 1982. Associative properties of the Escherlchia coli galactose binding protein and maltose binding protein. Biochem. Biophys. Res. Comm. 105: 476–481.

    Article  CAS  Google Scholar 

  34. Fields, S. and Song, S.-K. 1989. A novel genetic system to detect protein-protein interactions. Nature 340: 245–246.

    Article  CAS  Google Scholar 

  35. Li, X.-D., Xu, J., and Li, M. 1997. The human Δ1261 mutation of the HERGpotassium channel results in a truncated protein that contains a subunit interaction domain and decreases the channel expression. J. Biol. Chem. 272: 705–708.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stricker, N., Christopherson, K., Yi, B. et al. PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences. Nat Biotechnol 15, 336–342 (1997). https://doi.org/10.1038/nbt0497-336

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0497-336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing