Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A fusion protein designed for noncovalent immobilization: stability, enzymatic activity, and use in an enzyme reactor

Abstract

We have designed a new method for enzyme immobilization using a fusion protein of yeast α-glucosidase containing at its C-terminus a polycationic hexa-arginine fusion peptide. This fusion protein can be directly adsorbed from crude cell extracts on polyanionic matrices in a specific, oriented fashion. Upon noncovalent immobilization by polyionic interactions, the stability of the fusion protein is not affected by pH-, urea-, or thermal-denaturation. Furthermore, the enzymatic properties (specific activity at increasing enzyme concentration, Michaelis constant, or activation energy of the enzymatic reaction) are not influenced by this noncovalent coupling. The operational stability of the coupled enzyme under conditions of continuous substrate conversion is, however, increased significantly compared to the soluble form. Fusion proteins containing polyionic peptide sequences are proposed as versatile tools for the production of immobilized enzyme catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nelson, J.M. and Griffin, E.G. 1916. Adsorption of invertase. J. Am. Chem. Soc. 38: 1109–1115.

    Article  CAS  Google Scholar 

  2. Tosa, T., Mori, T., Fuse, N. and Chibata, I. 1967. Studies on continuous enzyme reaction. IV. Preparation of a DEAE-Sephadex-Aminoacylase column and continuous optical resolution of acyl-DL-amino acids. Biotechnol. Bioeng. 9: 603–615.

    Article  CAS  Google Scholar 

  3. Janecek, S. 1993. Strategies for obtaining stable enzymes. Process Biochem. 28: 435–445.

    Article  CAS  Google Scholar 

  4. Katchalski-Katzir, E. 1993. Immobilized enzymes-learning from past successes and failures. TibTech. 11: 471–478.

    Article  CAS  Google Scholar 

  5. Michalon, P., Roche, J., Coutorier, R., Favre-Bonvin, G. and Marion, C. 1993. DNase activity of micrococcal endonuclease covalently immobilized on nylon and polystyrene. Enzyme Microb. Technol. 15: 215–221.

    Article  CAS  Google Scholar 

  6. Shankar, V., Nehete, P.N. and Kothari, R.M. 1992. Immobilization of amyloglu-cosidase. Indian J. of Biochem. & Biophys. 30: 62–70.

    Google Scholar 

  7. Ulbrich, R. 1989. Immobilisierte Enzyme, pp. 298–341 in Enzymkatalyse. Schellenberger, A. (ed.). Springer-Verlag, Berlin, Heidelberg, New York.

    Chapter  Google Scholar 

  8. Leon, J. and Vega, J.M. 1992. Effect of immobilization on the kinetic and stability properties of o-acetyl-l-serine sulfhydrylase from Chlamydomonas reinhardii . Biocatalysis 7: 29–35.

    Article  CAS  Google Scholar 

  9. Pilone, M.S., Pollegioni, L. and Buto, S. 1992. Stability and kinetic properties of immobilized Rhodotorula gracilis D-amio acid oxidase. Biotechnol. and Appl. Biochem. 16: 252–262.

    CAS  Google Scholar 

  10. Gaikwad, S.M. and Deshpande, V.V. 1992. Immobilization of glucose isomerase on indion 48-R. Enzyme Microb. Technol. 14: 855–858.

    Article  CAS  Google Scholar 

  11. Gloger, M. and Tischer, W. 1983. Determination of the catalytic activity of immobilized enzymes, pp. 142–163 in Methods of Enzymatic Analysis, Vol. I, Bergmeyer, H. U., Bergmeyer, J., and GraBI, M. (eds.). Verlag Chemie/Weinheim.

    Google Scholar 

  12. Kopetzki, E., Bucket, P. and Schumacher, G. 1989. Cloning and characterization of baker's yeast α-glucosidase, over-expression in a yeast strain devoid of vacuolar proteinases. Yeast 5: 11–24.

    Article  CAS  Google Scholar 

  13. Kopetzki, E., Schumacher, G. and Buckel, P. 1989. Control of formation of active soluble or inactive insoluble baker's yeast α-glucosidase PI in Escherichea coli by induction and growth conditions. Mol. Gen. Genet. 216: 149–155.

    Article  CAS  Google Scholar 

  14. Höll-Neugebauer, B., 1992. University of Regensburg.

  15. Höll-Neugebauer, B., Rudolph, R., Schmidt, M. and Buchner, J. 1991. Reconstitution of a heat shock effect in vitro: Influence of GroE on the thermal aggregation of α-glucosidase gram yeast. Biochem. 30: 11609–11614.

    Article  Google Scholar 

  16. Needleman, R.B., Federoff, H.J., Eccleshall, R., Buchferer, B. and Marmur, J. 1978. Purification and characterization of an α-glucosidase from Saccharomyces carlsbergensis . Biochem. 17: 4657–4661.

    Article  CAS  Google Scholar 

  17. Halvorson, H. 1966. α-Glucosidase from yeast. Methods in Enzymol. 8: 559–562.

    Article  CAS  Google Scholar 

  18. Tabata, S., Ide, T., Umemura, Y. and Torii, K. 1984. Purification and characterization of α-glucosidase produced by Saccharomyces in response to three distinct maltose genes. Biochim. Biophys. Acta 197: 231–238.

    Article  Google Scholar 

  19. Flaschel, E. and Friehs, K. 1993. Improvement of downstream processing of recombinant proteins by means of genetic engineering methods. Biotech. Adv. 11: 31–78.

    Article  CAS  Google Scholar 

  20. Sassenfeld, H.M. 1990. Engineering proteins for purification. TibTech 8: 88–93.

    Article  CAS  Google Scholar 

  21. Asther, M. and Meunier, J.-C. 1993. Immobilization as a tool for the stabilization of lignin peroxidase produced by Phanerochaete chrysosporium INA-12. Appl. Biochem. and Biotechnol. 38: 57–67.

    Article  CAS  Google Scholar 

  22. Sadhukhan, R., Roy, S.K. and Chakrabarty, S.L. 1993. Immobilization of α-amylase from Myceliophthora thermophila D-14 (ATCC 48104). Enzyme Microb. Technol. 15: 801–804.

    Article  CAS  Google Scholar 

  23. Martinek, K., Klibanov, A.M., Goldmacher, V.S. and Berecin, I.V. 1977. The principles of enzyme stabilization. I. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochim. Biophys. Acta 485: 1–12.

    Article  CAS  Google Scholar 

  24. Mozhaev, V.V., Siksnis, V.A., Torchilin, V.R. and Martinek, K. 1983. Operational stability of copolymerized enzymes at elevated temperatures. Biotechnol. Bioeng. 25: 1937–1945.

    Article  CAS  Google Scholar 

  25. Mozhaev, V.V., Melik-Nubarov, N.S., Sergeeva, M.V., Siksnis, V.A. and Martinek, K. 1990. Strategies for stabilizing enzymes. Part one: Increasing stability of enzymes via their multi-point interaction with a support. Biocatalysis 3: 179–187.

    Article  CAS  Google Scholar 

  26. Mozhaev, V.V., Martinek, K. and Berezin, I.V. 1979. Effect of immobilization on folding of protein (trypsin). Mol. Biol. 13: 52–57.

    Google Scholar 

  27. Montero, M.A. and Romeu, A. 1993. Properties of almond β-glucosidase immobilized on concanavalin A-sepharose. Biochem. and Mol. Biol. Int. 30: 685–689.

    CAS  Google Scholar 

  28. Bode, W., Fehlhammer, H. and Huber, R. 1976. Crystal structure of Bovine Trypsinogen at 1.8 Å resolution. I. Data Collection, application of Patterson search techniques and preliminary structural interpretation. J. Mol. Biol. 106: 325–335.

    Article  CAS  Google Scholar 

  29. Padmanabhan, K., Padmanabhan, K.P., Tulinsky, A., Park, C.H., Bode, W., Huber, R., Blankenship, D.T., Cardin, A.D. and Kisiel, W. 1993. Structure of human Des (1–45) Factor Xa at 2.2 Å resolution. J. Mol. Biol. 232: 947–966.

    Article  CAS  Google Scholar 

  30. Scott, D.L., White, S.P., Browning, J.L., Rosa, J.J., Gelb, M.H. and Sigler, P.B. 1991. Structure of free and inhibited human secretory Phospholipase A2 from inflammatory exudate. Science 254: 1007–1010.

    Article  CAS  Google Scholar 

  31. Stempfer, G., Höll-Neugebauer, B. and Rudolph, R. 1996. Improved refolding of an immobilized fusion protein. Nature Biotechnology. 14: 329–334.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Rudolph.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stempfer, G., Höll-Neugebauer, B., Kopetzki, E. et al. A fusion protein designed for noncovalent immobilization: stability, enzymatic activity, and use in an enzyme reactor. Nat Biotechnol 14, 481–484 (1996). https://doi.org/10.1038/nbt0496-481

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0496-481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing