Review Article | Published:

Progress in the Regeneration and Genetic Manipulation of Cereal Crops

Bio/Technologyvolume 6pages397402 (1988) | Download Citation

Subjects

Abstract

The economically important cereal and grass crops have generally proved to be notoriously recalcitrant to manipulation in vitro. Regeneration of plants from single cells, a prerequisite for cellular and molecular manipulation, has proven to be especially difficult. Consequently, this group of plants has until recently remained outside the main stream of plant biotechnology. The discovery and exploitation of embryogenic tissue cultures, in which plant regeneration takes place by the formation of embryos from single somatic cells, has led to the development of efficient procedures for plant regeneration in almost all of the important species of grasses, and recovery of mature plants from protoplasts in crops such as maize, rice and sugarcane. These results, along with the success in somatic hybridization and the demonstration of transient as well as stable expression of introduced genes in grass cells and plants, provide challenging opportunities for the genetic manipulation and improvement of this group of food crops. It is argued, however, that a far better understanding of growth, development (including morphogenesis in vitro), physiology and molecular biology/genetics of plants—and continuous dialogue and interaction with plant breeders and geneticists—are required for the effective and useful application of the modern tools of biotechnology to major crop species.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Morrish, F., Vasil, V., and Vasil, I.K. 1987. Developmental morphogenesis and genetic manipulation in tissue and cell cultures of the Gramineae. Adv. Genet. 24:431–499.

  2. 2

    Vasil, I.K. 1987. Developing cell and tissue culture systems for the improvement of cereal and grass crops. J. Plant Physiol. 128:193–218.

  3. 3

    Ranch, J.P., Oglesby, L., and Zielinski, A.C. 1985. Plant regeneration from embryo-derived tissue cultures of soybean. In Vitro 21:653–658.

  4. 4

    Umbeck, P., Johnson, G., Barton, K., and Swain, W. 1987 Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/Technology 5:263–266.

  5. 5

    Everett, N.P., Robinson, K.E.P., and Mastarenhas, D. 1987. Genetic engineering of sunflower (Helianthus annuus L.). Bio/Technology 5:1201–1204.

  6. 6

    Brackpool, A.L., Branton, R.L., and Blake, J. 1986. Regeneration in palms, p. 207–222. In: Cell Culture and Somatic Cell Genetics of Plants. Volume 3, Plant Regeneration and Genetic Variability (Vasil, I. K., ed.). Academic Press, Orlando.

  7. 7

    Cronauer-Mitra, S.S., and Krikorian, A.D. 1988. Plant regeneration via somatic embryogenesis in the seeded diploid banana Musa ornata Roxb. Plant Cell Rep. (in press).

  8. 8

    Vardi, A., Spiegel-Roy, P., and Galun, E. 1982. Plant regeneration from Citrus protoplasts: variability in methodological requirements among cultivars and species. Theoret. Appl. Genet. 62:171–176.

  9. 9

    Rao, P.S., and Ozias-Akins, P. 1985. Plant regeneration through somatic embryogenesis in protoplast cultures of sandalwood (Santalum album L.). Protoplasma 124:80–86.

  10. 10

    Hakman, I., Fowke, L.C., van Arnold, S., and Eriksson, T. 1985. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci. 38 53–59.

  11. 11

    Atree, S.M., Bekkaouni, F., Dunstan, D.I., and Fowke, L.C. 1987. Regeneration of somatic embryos from protoplasts isolated from an ernDryogenic suspension culture of white spruce (Picea glauca). Plant Cell Rep. (in press).

  12. 12

    Gupta, P.K., and Durzan, D.J. 1987. Somatic embryos from protoplasts of loblolly pine proembryonal cells. Bio/Technology 5:710–712.

  13. 13

    Durzan, D.J., and Gupta, P.K. 1987. Somatic embryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures. Pl. Sci. 52:229–235.

  14. 14

    Yamada, Y. 1977. Tissue culture studies in cereals, p. 144–159. In: Plant Cell, Tissue and Organ Culture (Reinert, J., and Bajaj, Y. P. S., eds.). Springer-Verlag, Heidelberg.

  15. 15

    Vasil, I.K. 1982. Somatic embryogenesis and plant regeneration in cereals and grasses, p. 101–104. In: Plant Tissue Culture 1982 (Fujiwara, A., ed.). Maruzen, Tokyo.

  16. 16

    Green, C.E. 1982. In vitro plant regeneration in cereals and grasses, p. 411–418. In: Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.). University of Calgary, Calgary, Canada.

  17. 17

    Thomas, E., King, P.J., and Potrykus, I. 1979. Improvement of crop plants via single cells in vitro—as assessment. Z. Pflanzenzuchtg. 82:1–30.

  18. 18

    Vasil, V. and Vasil, I.K. 1981. Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum and P. americanum × P. purpureum hybrid. Amer. J. Bot. 68:864–872.

  19. 19

    Bright, S.W.J. and Jones, M.G.K. (eds.). 1985. Cereal Tissue and Cell Culture, Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, The Netherlands.

  20. 20

    Vasil, I.K., and Vasil, V. 1986. Regeneration in cereal and other grass species, p. 121–150. In: Cell Culture and Somatic Cell Genetics of Plants, Volume 3, Plant Regeneration and Genetic Variability (Vasil, I.K., ed.). Academic Press, Orlando.

  21. 21

    Vasil, V., and Vasil, I.K. 1981. Somatic embryogenesis and plant regeneration from suspension cultures of pearl millet (Pennisetum americanum). Ann. Bot. 47:669–678.

  22. 22

    Hesemann, C.U., and Schroder, G. 1982. Loss of nuclear DNA in leaves of rye. Theoret. Appl. Genet. 62:128–131.

  23. 23

    Beaulieu, G.C., Rogers, S.O., and Bendich, A.J. 1985. DNA extracted from wheat leaves is highly degraded: a possible basis for the difficulty in establishing leaf cell cultures in the Gramineae, p. 11. In: Abst. 1st. Intern. Congr. PI. Molec. Biol., Savannah, GA.

  24. 24

    Taylor, M.G., and Vasil, I.K. 1987. Analysis of DNA size, content and cell cycle in leaves of Napier grass (Pennisetum purpureum Schum.). Theoret. Appl. Genet. 74:681–686.

  25. 25

    Rajasekaran, K., Hein, M.B., Davis, G.C., Carnes, M.G. and Vasil, I.K. 1987. Endogenous plant growth regulators in leaves and tissue cultures of napier grass (Pennisetum purpureum Schum.). J. Pl. Physiol. 130:13–25.

  26. 26

    Rajasekaran, K., Hein, M.B., and Vasil, I.K. 1987. Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf explants of Pennisetum purpureum Schum.: effects in vivo and in vitro of glyphosate, fluridone and paclobutrazol. Pl. Physiol. 84:47–51.

  27. 27

    Tomes, D.T., and Smith, O.S. 1985. The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theoret. Appl. Genet. 70:505–509.

  28. 28

    Haydu, Z., and Vasil, I.K. 1981. Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum. Theoret. Appl. Genet. 59:269–273.

  29. 29

    Lu, C., Vasil, V., and Vasil, I.K. 1983. Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theoret. Appl. Genet. 62:285–290.

  30. 30

    Duncan, D.R., Williams, M.E., Zehr, B.E., and Widholm, J.M. 1985. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165:322–332.

  31. 31

    Higgins, P., and Mathias, R.J. 1987. The effect of the 4B chromosomes of hexaploid wheat on the growth and regeneration of callus cultures. Theoret. Appl. Genet. 74:439–444.

  32. 32

    Bayliss, M.W. 1980. Chromosomal variation in plant tissues in culture. Int. Rev. Cytol. Suppl 11A:113–144.

  33. 33

    D'Amato, F. 1985. Cytogenetics of plant cell and tissue cultures and their regenerates. CRC Crit. Rev. Pl. Sci. 3:73–112.

  34. 34

    Swedlund, B., and Vasil, I.K. 1985. Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum (L.) K. Schum. Theoret. Appl. Genet. 69:575–581.

  35. 35

    Larkin, P.J., and Scowcroft, W.R. 1981. Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theoret. Appl. Genet. 60:197–214.

  36. 36

    Maretzki, A. 1987. Tissue culture: its prospects and problems, p. 343–384. In: Sugarcane Improvement Through Breeding (Heinz, D. J., ed.). Elsevier, Amsterdam.

  37. 37

    Cavallini, A., Lupi, M.C., Cremonini, R., and Bennici, A. 1987. In vitro culture of Bellevalia romana (L.) Rchb. III. Cytological study of somatic embryos. Protoplasma 139:66–70.

  38. 38

    Kobayashi, S. 1987. Uniformity of plants regenerated from orange (Citrus sinensis Osb.) protoplasts. Theoret. Appl. Genet. 74:10–14.

  39. 39

    Hibberd, K.A., Anderson, P.A., and Barker, M. 1986. Tryptophan overproducer mutants of cereal crops. United States Patent No. 4,581,847.

  40. 40

    Boyes, C.J., and Vasil, I.K. 1987. In vitro selection for tolerance to S-(2-aminoethyl)-L-cysteine and overproduction of lysine in embryogenic calli and regenerated plants of Pennisetum americanum (L.) K. Schum. Pl. Sci. 50:195–203.

  41. 41

    Fraley, R.T., Rogers, S.G., and Horsch, R.B. 1986. Genetic transformation in higher plants. CRC Crit. Rev. PI. Sci. 4:1–46.

  42. 42

    Srinivasan, C., and Vasil, I.K. 1986. Plant regeneration from protoplasts of sugarcane. J. Pl. Physiol. 126:41–48.

  43. 43

    Chen, D., and Xia, Z. 1987. Mature plant regeneration from cultured protoplasts of Polypogon fugax Nees ex Steud. Sci. Sinica 30B:698–703.

  44. 44

    Kyozuka, J., Hayashi, Y., and Shimamoto, K. 1987. High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Molec. Gen. Genet. 206:408–413.

  45. 45

    Rhodes, C.A., Lowe, K.S., and Ruby, K.L. 1988. Plant regeneration from protoplasts isolated from embryonic maize cell cultures. Bio/Technology 6:56–60.

  46. 46

    Tabaeizadeh, Z., Ferl, R.J., and Vasil, I.K. 1986. Somatic hybridization in the Gramineae: Saccharum officinarum L. (sugarcane) + Pennisetum americanum (L.) K. Schum. (pearl millet). Proc. Natl. Acad. Sci. U.S.A. 83:5616–5619.

  47. 47

    Terada, R., Kyozuka, J., Nishibayashi, S., and Shimamoto, K. 1987. Plantlet regeneration from somatic hybrids of rice (Oryza sativa L.) and barnyard grass (Ehinochloa oryzicola Vasing). Molec. Gen. Genet. 210:39–43.

  48. 48

    Ozias-Akins, P., Tabaeizadeh, Z., Pring, D.R., and Vasil, I.K. 1988. Preferential amplification of mitochondrial DNA fragments in somatic hybrids of the Gramineae. Curr. Genet. (in press).

  49. 49

    Potrykus, I., Petruska, J., Paszkowski, J., Saul, M., and Shillito, R.D. 1985. Direct gene transfer to cells of a graminaceous monocot. Molec. Gen. Genet. 199:183–188.

  50. 50

    Lorz, H., Baker, B., and Schell, J. 1985. Gene transfer to cereal cells mediated by protoplast transformation. Molec. Gen. Genet. 199:178–182.

  51. 51

    Fromm, M., Taylor, L.P., and Walbot, V. 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793.

  52. 52

    Uchimiya, H., Fushimi, T., Hashimoto, H., Harada, H., Syono, K., and Sugawara, Y. 1986. Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa L.). Molec. Gen. Genet. 204:204–207.

  53. 53

    Hauptmann, R.M., Ozias-Akins, P., Vasil, V., Tabaeizadeh, Z., Rogers, S.G., Horsch, R.B., Vasil, I.K., and Fraley, R.T. 1987. Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Pl. Cell Rep. 6:265–270.

  54. 54

    Hauptmann, R.M., Vasil, V., Ozias-Akins, P., Tabaeizadeh, Z., Rogers, S.G., Fraley, R.T., Horsch, R.B., and Vasil, I.K. 1988. Evaluation of selectable markers for obtaining stable transformants in the Gramineae PI. Physiol. (in Press).

  55. 55

    Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D. and Detmer, J. 1988. Genetically transformed maize plants from electroporated protoplasts. Nature (submitted).

  56. 56

    de la Pena, A., Lorz, H., and Schell, J. 1987. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325:274–276.

  57. 57

    Schell, J.S. 1987. Transgenic plants as tools to study the molecular organization of plant genes. Science 237:1176–1183.

  58. 58

    Schafer, W., Gorz, A., and Kahl, G. 1987. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327:529–532.

Download references

Author information

Affiliations

  1. Department of Vegetable Crops, University of Florida, 511 Bartram Hall West, Gainesville, FL, 32611

    • Indra K. Vasil

Authors

  1. Search for Indra K. Vasil in:

About this article

Publication history

Issue Date

DOI

https://doi.org/10.1038/nbt0488-397

Further reading