Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Stable Yeast Transformants that Secrete Functional α–Amylase Encoded by Cloned Mouse Pancreatic cDNA

Abstract

Mouse pancreatic α–amylase complementary DNA was inserted into a yeast shuttle vector after the Saccharomyces cerevisiae MFα1 promoter and secretion signals coding sequences. When transformed with the recombinant plasmid, S. cerevisiae cells were able to synthesize and secrete functional α–amylase, efficiently hydrolysing starch present in the culture medium. Stable amylolytic cells were obtained from different yeast strains. This work represents a significant step towards producing yeast that can convert starchy materials directly to ethanol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thomsen, K.K. 1983. Mouse α-amylase synthesized by Saccharomyces cerevisiae is released into the culture medium. Carlsberg Res. Commun. 48:545–555.

    Article  CAS  Google Scholar 

  2. Rothstein, S.J., Lazarus, C.M., Smith, W.E., Baulcombe, D.C., and Gatenby, A.A. 1984. Secretion of a wheat α-amylase expressed in yeast. Nature 308:662–665.

    Article  CAS  Google Scholar 

  3. Sandstedt, R.M. and Ueda, S. 1969. Alpha-amylase adsorption on raw starch and its relation to raw starch digestion. J. Japan Soc. Starch Sci. 17:215–228.

    CAS  Google Scholar 

  4. Ueda, S. 1982. Raw starch digestion and ethanol fermentation of starch materials without cooking by fungal amylases. Workshop on Carbohydrate Resources and Biotechnology, Tsukuba, Japan, p. 16–24.

    Google Scholar 

  5. Aunstrup, K. 1978. Enzymes of industrial interest: Traditional products. Annual Rep. on Ferment. Processes 2:125–154.

    Article  CAS  Google Scholar 

  6. Tosi, M., Bovey, R., Astolfi Filho, S., Bodary, S., Meisler, M., and Wellauer, P. 1984. Multiple non-allelic genes encoding pancreatic α-amylase of mouse are expressed in a strain-specific fashion. EMBO J. 3:2809–2816.

    Article  CAS  Google Scholar 

  7. Cornelis, P., Digneffe, C., and Willemot, K. 1982. Cloning and expression of a Bacillus coagulans amylase gene in Escherichia coli. Molec. Gen. Genet. 186:507–511.

    Article  CAS  Google Scholar 

  8. Astolfi Filho, S., Tosi, M., Azevedo, M.O., Galembeck, E.V., and Schenberg Frascino, A.C. 1983. Construção de um clone de Escherichia coli capaz de sintetizar α-amylase de camundongo. Arq. Biol. Tecnol. 26:151.

    Google Scholar 

  9. Novick, P., Field, C., and Schekman, R. 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215.

    Article  CAS  Google Scholar 

  10. Duntze, W., MacKay, V., and Manney, T.R. 1970. Saccharomyces cerevisiae: A diffusible sex factor. Science 168:1472–1473.

    Article  CAS  Google Scholar 

  11. Kurjan, J. and Herskowitz, I. 1982. Structure of a yeast pheromone gene (MFα): A putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30:933–943.

    Article  CAS  Google Scholar 

  12. Singh, A., Chen, E.Y., Lugovoy, J.M., Chang, C.N., Hitzeman, R.A., and Seeburg, P.H. 1983. Saccharomyces cerevisiae contains two discrete genes coding for the α-factor pheromone. Nucleic Acids Res. 11:4049–4063.

    Article  CAS  Google Scholar 

  13. Julius, D., Blair, L., Brake, A., Sprague, G., and Thorner, J. 1983. Yeast α-factor is processed from a larger precursor polypeptide: The essential role of a membrane-bound dipeptidyl aminopeptidase. Cell 32:839–852.

    Article  CAS  Google Scholar 

  14. Julius, D., Schekman, R., and Thorner, J. 1984. Glycosylation and processing of prepro-α-factor through the yeast secretory pathway. Cell 36:309–318.

    Article  CAS  Google Scholar 

  15. Bitter, G.A., Chen, K.K., Banks, A.R., and Lai, P.H. 1984. Secretion of foreign proteins from Saccharomyces cerevisiae directed by α-factor gene fusions. Proc. Natl. Acad. Sci. (USA) 81:5530–5534.

    Article  Google Scholar 

  16. Brake, A.J., Merryweather, J.P., Coit, D.G., Heberlein, U.A., Masiarz, F.R., Mullenbach, G.T., Urdea, M.S., Valenzuela, P., and Barr, P.J. 1984. α-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. (USA) 81:4642–4646.

    Article  CAS  Google Scholar 

  17. Singh, A., Lugovoy, J.M., Kohr, W.J. and Perry, L.J. 1984. Synthesis, secretion and processing of α-factor-interferon fusion proteins in yeast. Nucleic Acids Res. 12:8927–8938.

    Article  CAS  Google Scholar 

  18. Broach, J.R., Strathern, J.N., and Hicks, J.B. 1979. Transformation in yeast: Development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8:121–133.

    Article  CAS  Google Scholar 

  19. Zaret, K.S. and Sherman, F. 1982. DNA sequence required for efficient transcription termination in yeast. Cell 28:563–573.

    Article  CAS  Google Scholar 

  20. Hitzeman, R.A., Leung, D.W., Perry, L.J., Kohr, W.J., Levine, H.L., and Goeddel, D.V. 1983. Secretion of human interferons by yeast. Science 219:620–625.

    Article  CAS  Google Scholar 

  21. Falco, S.C., Rose, M., and Botstein, D. 1983. Homologous recombination between episomal plasmids and chromosomes in yeast. Genetics 105:843–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Innis, M.A., Holland, M.J., McCabe, P.C., Cole, G.E., Wittman, V.P., Tal, R., Watt, K.W.K., Gelfand, D.H., Holland, J.P., and Meade, J.H. 1985. Expression, glycosylation, and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae. Science 228:21–26.

    Article  CAS  Google Scholar 

  23. Wilson, J.J. and Ingledew, W.M. 1982. Isolation and characterization of Schwanniomyces alluvius amylolytic enzymes. Appl. Environ. Microbiol. 44:301–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bolivar, F. and Bachman, K. 1979. Plasmids of Escherichia coli as cloning vectors. Meth. Enzym. 68:245–267.

    Article  CAS  Google Scholar 

  25. Miller, J. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  26. Sherman, F., Fink, G.R., and Hicks, J.B. 1981. In: Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  27. Birnboim, H.C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513–1523.

    Article  CAS  Google Scholar 

  28. Maniatis, T., Fritsch, E., and Sambrook, J. 1982. Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  29. Sanger, F., Nicklen, S., and Coulson, A.R. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. (USA) 74:5463–6467.

    Article  CAS  Google Scholar 

  30. Kilmartin, J.V., Wright, B., and Milstein, C. 1982. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol. 93:576–582.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filho, S., Galembeck, E., Faria, J. et al. Stable Yeast Transformants that Secrete Functional α–Amylase Encoded by Cloned Mouse Pancreatic cDNA. Nat Biotechnol 4, 311–315 (1986). https://doi.org/10.1038/nbt0486-311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0486-311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing