Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Synthetic CD4 exocyclics inhibit binding of human immunodeficiency virus type 1 envelope to CD4 and virus replication in T lymphocytes

Abstract

CD4 functions as a major T-cell surface receptor for human immunodeficiency virus by binding the human immunodeficiency virus type 1 (HIV-1) envelope protein gp120 with relatively high affinity. We have developed constrained aromatically modified analogs of the secondary structures of the first domain of CD4 in order to analyze surfaces involved in binding of gp120. Complementarity determining-like regions (CDRs) of the D1 domain of CD4 were reproduced as synthetic aromatically modified exocyclic (AMEs) forms. The exocyclic CDR3.AME(82-89), derived from the CDRS (residues 82-89) region of CD4 D1 domain, specifically inhibited binding of recombinant gp120 to both recombinant soluble CD4, and CD4+ Jurkat cells, and blocked syncytium formation and virus particle production caused by HIV-1 infection. We have previously shown that the CDR3.AME analog binds to the CD4 CDR3 region and creates a disabled CD4 heterodimer. We propose that the AME prevents the formation of an essential homodimeric surface needed for efficient HIV binding. Additionally the disabled CD4 receptor may be less able to signal the cell to allow HIV replication and HIV infection. Such compounds may represent a new receptor specific approach to modulate biological functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gay, D., Maddon, P., Sekaly, R., Talle, M.A., Godfrey, M., Long, E., Goldstein, G., Chess, C., Axel, R., Kappler, J., and Marrack, P. 1987. Functional interaction between human T-cell protein CD4 and the major histocompatibility complex HLA-DR antigen. Nature 328: 626–629.

    Article  CAS  Google Scholar 

  2. Janeway, C.A. 1989. The role of CD4 in T-cell activation : accessory molecule or co-receptor. Immunol. Today 10: 234–238.

    Article  CAS  Google Scholar 

  3. Cammarota, G., Scheirle, A., Takacs, B., Doran, D.M., Knorr, R., Bannwarth, W., Guardiola, J., and Sinigaglia, F. 1992. Identification of a CD4 binding site on the β2 domain of HLA-DR molecules. Nature 356: 799–801.

    Article  CAS  Google Scholar 

  4. König, R., Huang, L.Y., and Germain, R.N. 1992. MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature 356: 796–798.

    Article  Google Scholar 

  5. Saizawa, K., Rojo, J., and Janeway, J.C.A. 1987. Evidence for a physical association of CD4 and CD3: a: β T cell receptor. Nature 328: 260–263.

    Article  CAS  Google Scholar 

  6. Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J.C., and Montagnier, L. 1984. T-lymphocyte T4 molecule behave as the receptor for human retrovirus LAV. Nature 312: 767–768.

    Article  CAS  Google Scholar 

  7. Maddon, P.J., Dalgleish, A.G., McDougal, J.S., Clapham, P.R., Weiss, R.A., and Axel, R. 1986. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47: 333–348.

    Article  CAS  Google Scholar 

  8. McDougal, J.S., Nicholson, J.K.A., Cross, G.D., Cort, S.P., Kennedy, M.S., and Mawle, A.C. 1986. Binding of the human retrovirus HTLV-III/LAV/ARV/HIV to the CD4 (T4) molecule: conformation dependence, eprtope mapping, antibody inhibition and potential for idiotypic mimicry. J. Immunol. 137: 2937–2944.

    CAS  Google Scholar 

  9. Weiner, D.B., Huebner, K., Williams, W.V., and Greene, M.I. 1991. Human genes other than CD4 facilitate HIV-1 infection of murine cells. Pathobiobgy 59: 361–371.

    Article  CAS  Google Scholar 

  10. Feng, Y., Broder, C.C., Kennedy, P.E., and Berger, E.A. 1996. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272: 872–877.

    Article  CAS  Google Scholar 

  11. Alkhatib, G., Combadiere, C., Broder, C.C., Feng, Y., Kennedy, P.E., Murphy, P.M., and Berger, E.A. 1996. CC CKR5: a RANTES, MIP-1 a, MIP-1B receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272: 1955–1958.

    Article  CAS  Google Scholar 

  12. Deng, H.K., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzto, P., Marmon, S., Sutton, R.E., Hill, C.M., Davis, C.B., Peiper, S.C., Schall, T.J., Littman, D.R., and Landau, N.R. 1996. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381: 661–666.

    Article  CAS  Google Scholar 

  13. Drajic, T., Litwin, V., Allaway, G.P., Martin, S.R., Huang, Y., Nagashima, K.A., Cayanan, C., Maddon, P.J., Koup, R.A., Moore, J.P., and Paxton, W.A. 1996. HIV-1 entry into CD4+ cells Is mediated by the chemokine receptor CC-CKR-5. Nature. 381: 667–673.

    Article  Google Scholar 

  14. Chao, B.H., Costopoulos, D.S., Curiel, T., Bertonis, J.M., Chisholm, P., Williams, C., Schooley, R.T., Rosa, J.J., Fisher, R.A., and Maraganore, J.M. 1989. A 113-amino acid fragment of CD4 produced in Escherichia coliblocks human immunodeficiency virus-induced cell fusion. J. Bid. Chem. 264: 5812–5817.

    CAS  Google Scholar 

  15. Arthos, J., Deen, K.C., Chaikin, M.A., Fomwald, J.A., Sathe, G., Sattentau, Q.J., Clapham, P.R., Weiss, R.A., McDougal, J.S., Pietropaolo, C., Axel, R., Truneh, A., Maddon, P.J., and Sweet, R.W. 1989. Identification of the residues in human CD4 critical for the binding of HIV. Cell 57: 469–481.

    Article  CAS  Google Scholar 

  16. Clayton, L.K., Hussey, R.E., Steinbrich, R., Rama-Chandran, H., Husain, Y., and Reinherz, E.L. 1988. Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature 335: 363–366.

    Article  CAS  Google Scholar 

  17. Mizukami, T., Fuerst, T.R., Berger, E.A., and Moss, B. 1988. Binding region for human immunodeficiency virus (HIV) and epitopes for HIV-blocking monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA 85: 9273–9277.

    Article  CAS  Google Scholar 

  18. Peterson, A. and Seed, B. 1988. Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 54: 65–72.

    Article  CAS  Google Scholar 

  19. Lamarre, D., Ashkenazi, A., Fleury, S., Smith, D.H., Sekaly, R.P., and Capon, D.J., 1989. MHC-blnding and gp120-binding functions of CD4 are separable. Science 245: 743–746.

    Article  CAS  Google Scholar 

  20. Ashkenazi, A., Presta, L.G., Marster, S.A., Camerato, T.R., Rosenthal, K.A., Fendly, B.M., and Capon, D.J. 1990. Mapping the CD4 binding site for human immunodeficiency vims by alanine-scanning mutagenesis. Proc. Natl. Acad. Sci. USA 87: 7150–7154.

    Article  CAS  Google Scholar 

  21. Moebius, U., Clayton, L.K., Abraham, S., Harrison, S.C., and Reinherz, E.L. 1992. The human immunodeficiency virus gp120 binding site on CD4: delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic structure. J. Exp. Med. 176: 507–517.

    Article  CAS  Google Scholar 

  22. Tsui, R., Sweet, R.W., Sathe, G., and Rosenberg, M. 1992. An efficient phage plaque screen for the random mutational analysis of the interaction of HIV-1 gp120 with human CD4. J. Biol. Chem. 267: 9361–9367.

    CAS  PubMed  Google Scholar 

  23. Houlgatte, R., Scarmato, P., El Marhomy, S., Martin, M., Ostankovitch, M., Lafosse, S., Vervisch, A., Auffray, C., and Piatier-Tonneau, D. 1994. HLA class II antigens and the human immunodeficiency virus envelope glycoprotein gp120 bind to the same face of CD4. J. Immunol. 152: 4475–4488.

    CAS  Google Scholar 

  24. Chen, S., Chrusciel, R.A., Nakanishi, H., Raktabutr, A., Johnson, M.E., Sato, A., Weiner, D., Hoxie, J., Saragovi, H.U., Greene, M., and Kahn, M. 1992. Design and synthesis of a CD4 β-tum mimetic that inhibits human immunodeficiency virus envelope glycoprotein gp120 binding and infection of human lymphocytes. Proc. Natl. Acad. Sci. USA 89: 5872–5876.

    Article  CAS  Google Scholar 

  25. Ryu, S.E., Kwong, P.D., Truneh, A., Porter, T.G., Arthos, J., Rosenberg, M., Dai, X., Xuong, N.H., Axel, R., Sweet, R.W., and Hendrickson, W.A. 1990. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature (London) 348: 419–426.

    Article  CAS  Google Scholar 

  26. Wang, J., Yan, Y., Garett, T.P.J., Liu, J., Rodgers, D.W., Garlick, R.L., Tarr, G.E., Husain, Y., Reinherz, E.L., and Harrison, S.C. 1990. Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature (London) 348: 411–418.

    Article  CAS  Google Scholar 

  27. Dougall, W.C., Peterson, N.C., and Greene, M.I. 1994. Design of pharmacologic agents based on antibody structure. Trends in Biotechnology 12: 372–379.

    Article  CAS  Google Scholar 

  28. Saragovi, H.U., Fitzpatrick, D., Raktabuhr, A., Nakanishi, H., Kahn, M., and Greene, M.I. 1991. Design and synthesis of a mimetic from an antibody complementarity-determining region. Science 253: 792–795.

    Article  CAS  Google Scholar 

  29. Bhat, T.N., Bentley, G., Boulot, G., Greene, M.I., Souchon, H., Schwartz, R., Mariuzza, R., and Poljak, R. 1994. Bound water molecules and conformattonal stabilization help mediate an antigen antibody association. Proc. Natl. Acad. Sci. USA 91: 1089–1093.

    Article  CAS  Google Scholar 

  30. Habeeb, F.F. 1973. A sensitive method for localization of disuffide containing peptides in column effluents. Anal. Bioch. 56: 60–65.

    Article  CAS  Google Scholar 

  31. Zhang, X., Piatier-Tonneau, D., Auffray, C., Murali, R., Mahapatra, A., Zhang, F., Maier, C.C., Saragovi, H., and Greene, M.I. 1996. Synthetic CD4 exocyclic peptides antagonize CD4 holoreceptor binding and T cell activation. Nature Biotechnology 14: 472–475.

    Article  CAS  Google Scholar 

  32. Autiera, M., Houlgatte, R., Martin, M., Auffray, C., Guardiola, J., and Piatier-Tonneau, D. 1995. Competition of HLA-DR and a β2 domain peptide for human immunodeficiency virus envelope glycoprotein gp120 binding to CD4. Int. Immunol. 7: 191–197.

    Article  Google Scholar 

  33. Tada, H., Shisho, O., Kuroshima, H., Koyama, M., and Tsukamoto, K. 1986. J. Immunol. Methods 93: 157–165.

    Article  CAS  Google Scholar 

  34. Corbeau, P., Devaux, C., Kourilsky, R., and Chermann, J.C. 1990. An early post-infection signal mediated by monoclonal anti-β2 microglobulin antibody is responsible for delayed production of human immunodeficiency virus type 1 in activated peripheral blood mononuclear cells. J. Virol. 64: 1459–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brodsky, M.H., Warton, M., Myers, R.M., and Littman, D. 1990. Analysis of the site in CD4 that binds to the HIV envelope glycoprotein. J. Immunol. 144: 3078–3086.

    CAS  Google Scholar 

  36. Lifson, J.E., Hwang, K.M., Nara, P.L., Fraser, B., Padgett, M., Dunlop, N.M., and Eiden, L.E. 1988. Synthetic CD4 peptide derivatives that inhibit HIV infection and cytopathic-ity. Science 241: 712–716.

    Article  CAS  Google Scholar 

  37. Repke, H., Gabuzda, D., Palu, G., Emmrich, R., and Sodrosky, J. 1992. Effect of CD4 synthetic peptides on HIV type 1 envelope glycoprotein function. J. Immunol. 149: 1809–1816.

    CAS  PubMed  Google Scholar 

  38. Fleury, S., Lamarre, D., Meloche, S., Ryu, S.E., Cantin, C., Hendrickson, W.A., and Sekaly, R.P. 1991. Mutational analysis of the interaction between CD4 and class II MHC: class II antigens contact CD4 on a surface opposite the gp120-binding site. Cell 66: 1037–1049.

    Article  CAS  Google Scholar 

  39. Langedijk, J.P.M., Puijk, W.C., van Horn, W.P., and Meloen, R.H., 1993. Location of CD4 dimerization site explains critical role of CDR3-like region in HIV-1 infection and T-cell activation and Implies a model for complex of coreceptor-MHC. J. Biol. Chem. 268: 16875–16878.

    CAS  Google Scholar 

  40. Ponder, J.W. and Richards, F.M. 1987. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193: 775–791.

    Google Scholar 

  41. Reed, L.J. and Muench, H. 1938. A simple method of estimating fifty percent end-points. American J. Hygiene 27: 493–497.

    Google Scholar 

  42. Traunecker, A., Schneider, J., Kiefer, H., and Karjalainen, K. 1989. Highly efficient neutralization of HIV with recombinant CD4 immunoglobulin molecules. Nature 339: 68–70.

    Article  CAS  Google Scholar 

  43. Montifiori, D.C., Robinson, W.E., Schiffman, S.S., and Michell, W.M. 1988. J. Clin. Microbiol. 6: 231–235.

    Google Scholar 

  44. Srikantan, V., Wang, B., Satre, M.A., Ugen, K.E., Dang, K., Scales, F., Godillot, A.R., Williams, W.V., and Weiner, D.B. 1994. Cloning and biological characterization of human single-chain Pv fragments that mediate neutralization of HIV-1. AIDS 8: 1525–1532.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Gaubin, M., Briant, L. et al. Synthetic CD4 exocyclics inhibit binding of human immunodeficiency virus type 1 envelope to CD4 and virus replication in T lymphocytes . Nat Biotechnol 15, 150–154 (1997). https://doi.org/10.1038/nbt0297-150

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0297-150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing