Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Plant Seed Oil-bodies as Carriers for Foreign Proteins

Abstract

Plant seeds frequently store oils (triglycerides) in discrete organelles called oil-bodies. These are normally surrounded by a phospholipid half-unit membrane equipped with specialized proteins called oleosins. Oleosins are highly lipophilic proteins, are expressed at high levels in many seeds and are specifically targeted to oil-bodies. We have investigated the potential of oleosins to act as carriers for recombinant proteins by the production of translational fusions between oleosins and genes encoding proteins foreign to plant cells. We have shown that a fusion comprising a complete oleosin coding domain and a β-glucuronidase coding sequence may be expressed specifically in the seeds of the oilseed crop plant, Brassica napus, and its product is correctly targeted with approximately 80% of the activity partitioning with oil-bodies. Recombinant oil-bodies may be used to facilitate separation of a recombinant protein from other cellular proteins. Using this approach, the desired protein may be cleaved from the oil-bodies using an endoprotease and further purified. Alternatively, a fusion protein which is enzymatically active and resides on the oil-bodies may be used directly in heterogeneous catalysis. In this application, after a round of catalysis the oil-bodies may be recovered and re-used several times without loss of activity. Thus the oil-bodies act as an immobilization matrix. The fusion protein is stable hi dry seeds for long periods and when extracted has a half-life of 3–4 weeks on oil-bodies. Finally, the production of these recombinant oil-bodies is extremely inexpensive, offering a novel route to the manufacture of recombinant proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vandekerckhove, J., Damme, J.V., Lijsebettens, M.V., Botterman, J. deBlock, M., Vandewiele, M., De Clercq, A., Leemans, J., Van Montagu, M., and Krebbers, E. 1989. Enkephalins produced in transgenic plants using modified 2S seed storage proteins. Bio/Technology 7: 923–929.

    Google Scholar 

  2. Sijmons, P.C., Dekker, B.M.M., Schrammeijer, B., Verwoerd, T.C., van den Elzen, P.J.M. and Hoekema, A. 1990. Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8: 217–221.

    CAS  Google Scholar 

  3. Pen, J., Molendijk, L., Quax, W.J., Sijmons, P.C., van Ooyen, A.J.J., van den Elzen, P.J.M., Reitweld, K. and Hoekema, A., 1992. Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Bio/Technology 10: 292–296.

    CAS  Google Scholar 

  4. Pen, J., Verwoeid, T.C., vanParidon, P.A., Beudeker, R.F., van den Elzen, P.J.M., Geerse, K., vander Klis, J.D., Versteegh, H.A.J., van Ooyen, A.J.J. and Hoekema, A. 1993. Phytase-containing transgenic seed as a novel feed additive for improved phophorus utilization. Bio/Technology 11: 811–814.

    CAS  Google Scholar 

  5. Yatsu, I.Y. and Jacks, T.J. 1972. Spherosome membranes; Half unit membranes. Plant Physiol. 49: 937–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang, A.H.C. 1992. Oil bodies and oleosins in seeds. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43: 177–200.

    Article  CAS  Google Scholar 

  7. Murphy, D.J. 1993. Structure, function and biogenesis of storage lipid bodies and oleosins in-plants. Progress in Lipid research. 32: 247–280.

    Article  CAS  PubMed  Google Scholar 

  8. Ross, J.H.E., Sanchez, J., Millan, F. and Murphy, D.J. 1993. Differential presence of oleosins in oleogenic seed and mesocarp tissues in olive (Olea europaea) and avocado (Persea americana). Plant Science 93: 203–210.

    Article  CAS  Google Scholar 

  9. Murphy, D.J., Cummins, I. and Kang, A.S. 1989. Synthesis of the major oil-body membrane protein in developing rapeseed (Brassica napus) embryos; Integration with storage-lipid and storage protein synthesis and implications for the mechanism of oil-body formation. Biochem. J. 258: 285–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holbrook, L. H., van Rooijen, G. J. H., Wilen, R.W. and Moloney, M.M., 1991. Oil-body proteins in microspore derived embryos of Brassica napus: Hormonal, osmotic and developmental regulation of synthesis. Plant Physiol. 97: 1051–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Rooijen, G. J. H., Wilen, R.W., Holbrook, L.A. and Moloney, M.M. 1992. Regulation of accumulation of mRNAs encoding a 20 kDa oil-body protein in microspore derived embryos of Brassica napus. Can. J. Bot. 70: 503–508.

    Article  CAS  Google Scholar 

  12. Wilen, R.W., van Rooijen, G.J. H., Pierce, D.W., Pharis, R.P., Holbrook, L.A. and Moloney, M.M. 1991. Effects of jasmonic acid on embryo-specific processes in Brassica and Linum oilseeds. Plant Physiol. 95: 399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taylor, D.C., Weber, N., Underhill, E.W., Pomeroy, M.K., Keller, W.A., Wilen, R.W., Scowcroft, W.R., Moloney, M.M. and Holbrook, L.A. 1990. Storage protein regulation and lipid accumulation in microspore embryos of Brassica napus L. Planta 181: 18–26.

    Article  CAS  PubMed  Google Scholar 

  14. Van Rooijen, G. J. H., Terning, L.I. and Moloney, M.M. 1992. Nucleotide sequence of Arabidopsis thaliana oleosin gene. Plant Mol. Biol. 18: 1177–1179.

    Article  CAS  PubMed  Google Scholar 

  15. Moloney, M.M. 1993. Oil-body proteins as carriers for high value peptides in plants. European Patent Application PCT/CA92/00161

    Google Scholar 

  16. Jensen, V.J. and Rough, S. 1988. Industrial scale production and application of immobilized glucose isomerase. Methods in Enzymol. 136: 356–370.

    Article  Google Scholar 

  17. Carrington, T. R. 1971. The development of commercial processes for the production of 6-aminopenicillanic acid (6-APA) Proc. Roy. Soc Lond. Ser B. 179: 321–334.

    CAS  Google Scholar 

  18. Kilbanov, A.M. 1983. Immobilized enzymes and cells as practical catalysts. Science 219: 722–727.

    Article  Google Scholar 

  19. Tosa, T., Sato, T., Nishida, Y. and Chibata, I. 1977. Reason for higher stability of aspartase activity of immobilized E. coli cells. Biochim. Biophys. Acta. 483: 193–201.

    Article  CAS  PubMed  Google Scholar 

  20. Leonowicz, A., Sarkar, J.M. and Bollag, J.M. 1988. Improvement in stability of an immobilized fungal laccase. Appl. Microbiol. Biotechnol. 29: 129–135.

    Article  CAS  Google Scholar 

  21. Jefferson, R.A., Burgess, S.M. and Hirsch, D. 1986. β-glucuronidase from Escherichia coli as a gene fusion marker. Proc. Nail. Acad. Sci. USA 83: 8447–8451.

    Article  CAS  Google Scholar 

  22. Jefferson, R.A. . 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

  23. Datla, R.S. S., Hammerlindl, J.K., Pelcher, L.E., Crosby, W.L. and Selvaraj, G. 1991. A bifunctional fusion between β-glucuronidase and neomycin phosphotransferase: a broad-spectrum marker enzyme for plants. Gene 101: 239–246.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, K., Huang, A.H.C. . 1991. Genomic nucleotide sequence of a Brassica napus 20 kDa oleosin gene. Plant Physiol. 96: 1395–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Murphy, D.J., Keen, J.N., O'Sullivan, J.N., Au, D.M.Y., Edwards, E-W., Jackson, P.J., Cummins, I., Gibbons, T., Shaw, C.H., and Anderson, J.R., 1991. A class of amphipathic proteins associated with lipid storage bodies in plants. Possible similarities with animal serum apolipoproteins. Biochim. Biophys. Acta 1088: 86–94.

    Article  CAS  PubMed  Google Scholar 

  26. Keddie, J.S., Hubner, G., Slocombe, S.P., Jarvis, R.P., Cummins, I., Edwards, E., Shaw, C.H. and Murphy, D. J. 1992. Cloning and characterization of an oleosin gene from Brassica napus. Plant Mol. Biol. 19: 443–453.

    Article  CAS  PubMed  Google Scholar 

  27. Plant, A.L., Van Rooijen, G.J. H., Anderson, C.P. and Moloney, M.M. 1994. Regulation of an Arabidopsis oleosin promoter in transgenic Brassica napus Plant Mol. Biol. 25: 193–205.

    Article  CAS  PubMed  Google Scholar 

  28. McBride, K.E. and Summerfelt, K.R. 1990. Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 14: 269–276.

    Article  CAS  PubMed  Google Scholar 

  29. Moloney, M.M., Walker, J.M. and Sharma, K.K. 1989. High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Reports 8: 238–242.

    Article  CAS  PubMed  Google Scholar 

  30. Farrel, L.B. and Beachy, R.N. 1990. Manipulation of β-glucuronidase for use as a reporter in vacuolar targeting studies. Plant Mol. Biol. 15: 821–825.

    Article  Google Scholar 

  31. Hood, E.E., Helmer, G.L., Fraley, R.T. and Chilton, M.D. 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiB0542 outside of T-DNA. J. Bacteriol. 168: 1291–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dower, W.J., Miller, J.F. and Ragsdale, C.W. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucl. Acids Res. 16: 6127–6145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hills, W.J., Watson, M.D. and Murphy, D.J. 1993. Targeting of oleosins to the oilbodies of oilseed rape (Brassica napus L.) Planta 189: 24–29.

    Article  CAS  PubMed  Google Scholar 

  34. Hoffman, L.M., and Herman, E.M., 1988. A modified storage protein is synthesized, processed and degraded in the seeds of transgenic plants. Plant Mol. Biol 11: 717–729.

    Article  CAS  PubMed  Google Scholar 

  35. Daniels, M.J. 1987. Industrial operation of immobilized enzymes. Methods in Enzymol. 136: 371–379.

    Article  CAS  Google Scholar 

  36. Bradford, M.M. 1976. Rapid and quantitative method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–252.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice M. Motoney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rooijen, G., Motoney, M. Plant Seed Oil-bodies as Carriers for Foreign Proteins. Nat Biotechnol 13, 72–77 (1995). https://doi.org/10.1038/nbt0195-72

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0195-72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing