Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Improvement of Ornamental Characters and Fragrance Production in Lemon-scented Geranium Through Genetic Transformation by Agrobacterium rhizogenes

An Erratum to this article was published on 01 April 1994

Abstract

We obtained transformed root cultures for the scented, “lemon geranium (Pelargonium sp.) by inoculating stem and leaf fragments with Agrobacterium rhizogenes. Shoots regenerated spontaneously from transformed roots and contained the TL– and TR–DNAs (left–hand and right–hand transferred DNAs) from the Ri (root–inducing) plasmid. The transformed phenotype included shorter stature, increased leaf and branch production, accelerated rooting of cuttings, altered root system architecture, inhibition of ftowering and increased production of geraniol and other aromatic substances. We discuss applications of this phenotype in improving the ornamental quality of scented geraniums and increasing the production of their essential oils.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tepfer, D. 1989. Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology and evolution, p. 294–342. In: Plant-Microbe Interactions, T. Kosuge, E. Nester (Eds.). McGraw-Hill, New York.

    Google Scholar 

  2. Tepfer, D. and Tempé, J. 1981. Production d'agropine par des racines formées sous 1'action d'Agrobacterium rhizogenes, souche A4. C. R. Acad. Sci. 292: 153–156.

    CAS  Google Scholar 

  3. Tepfer, D. 1982. La transformation génétique de plantes supérieures par Agrobacterium rhizogenes, 47–59. In: 2e Colloque sur les Recherches Fruitières, (Eds.). Centre Technique Interprofessionnel des Fruits et Légumes, Bordeaux.

    Google Scholar 

  4. Tepfer, D. 1984. Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 47: 959–967.

    Article  Google Scholar 

  5. Tepfer, D. 1983. The potential uses of Agrobacterium rhizogenes in the genetic engineering of higher plants: nature got there first, p. 153–164. In: Genetic Engineering in Eukaryotes, P. Lurquin, A. Kleinhofs (Eds.). Plenum Press, New York.

    Chapter  Google Scholar 

  6. Slightom, J., Durand-Tardif, M., Jouanin, L. and Tepfer, D. 1986. Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid. J. Biol. Chem. 261: 108–121.

    CAS  PubMed  Google Scholar 

  7. Ravid, U. and Putievsky, E. 1984. The influence of harvest dales and leaf location on the essential oil content and major components of Pelargonium graveolens L. Acta Hort. 144: 159–165.

    Article  Google Scholar 

  8. Jung, G. and Tepfer, D. 1987. Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots. Plant Science 50: 145–151.

    Article  CAS  Google Scholar 

  9. Kennedy, A.I., Deans, S.G., Svoboda, K.P., Gray, A.I. and Waterman, P.G. 1993. Volatile oils from normal and transformed root of Artemisia absinthium. Phytochemistry 32: 1449–1451.

    Article  CAS  Google Scholar 

  10. Maldonadomendoza, I.E., Ayoratalavera, T. and Loyolavargas, V.M. 1993. Establishment of hairy root cultures of Datura stramonium—characterization and stability of tropane alkaloid production during long periods of subculturing. Plant Cell Tissue Organ Cult. 33: 321–329.

    Article  CAS  Google Scholar 

  11. Ooms, G., Atkinson, J., Bossen, M. and Leigh, R. 1986. TL-DNA from Agrobacterium rhizogenes plasmid pRi1855 reduces osmotic pressure in transformed plants grown in vitro. Planta 168: 106–112.

    Article  CAS  PubMed  Google Scholar 

  12. Maurel, C., Barbierbrygoo, H., Spena, A., Tempé, J. and Guern, J. 1991. Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol. 97: 212–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmulling, T., Rohrig, H., Pilz, S., Walden, R. and Schell, J. 1993. Restoration of fertility by antisense RNA in genetically engineered male sterile tobacco plants. Mol. Gen. Genet. 37: 385–394.

    Google Scholar 

  14. Martin-Tanguy, J., Corbineau, F., Burtin, D., Ben-Hayyim, G. and Tepfer, D. 1993. Genetic transformation with a derivative of rolC from Agrobacterium rhizogenes and treatment with α-aminoisobutyric acid produce similar phenotypes and reduce ethylene production and the accumulation of water-insoluble polyamine-hydroxycinnamic acid conjugates in tobacco flowers. Plant Science. In press.

  15. Estruch, J., Chriqui, D., Grossmann, K., Schell, J. and Spena, A. 1991. The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J. 10: 2889–2895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Estruch, J., Schell, J. and Spena, A. 1991. The protein encoded by the rolB plant oncogene hydrolyses indole glucosides. EMBO J. 10: 3125–3128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lambert, C. and Tepfer, D. 1992. Use of Agrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor. Appl. Genet. 85: 105–109.

    Article  CAS  PubMed  Google Scholar 

  18. Smulders, M.J., Croes, A., Kemp, A., Hese, K., Harren, F. and Wullems, G. 1991. Inhibition by ethylene of auxin promotion of flower bud formation in tobacco explants is absent in plants transformed by Agrobacterium rhizogenes. Plant Physiol. 96: 1131–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin-Tanguy, J., Tepfer, D., Paynot, M., Burtin, D., Heisler, L. and Martin, C. 1990. Inverse relationship between polyamine levels and the degree of phenotypic alteration induced by the Ri TL-DNA from Agrobacterium rhizogenes. Plant Physiol. 92: 912–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michael, A., Burtin, D., Martin-Tanguy, J. and Tepfer, D. 1990. Effects of the rolC locus from the Ri TL-DNA of Agrobacterium rhizogenes on development and polyamine metabolism in tobacco, p. 863–868. In: GIM 90 Proceedings, H. Helsot, J. Davis, J. Florint, L. Bobichon, G. Durand, L. Penasse (Eds.). Société Francaise de Microbiologie. Paris.

    Google Scholar 

  21. Burtin, D., Martin-Tanguy, J. and Tepfer, D. 1991. α-DL-difluoromethy-lornithine, a specific, irreversible inhibitor of putrescine biosynthesis, induces a phenotype in tobacco similar to that ascribed to the root-inducing, left-hand transferred DNA of Agrobacterium rhizogenes. Plant Physiol. 95: 461–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun, L.-Y., Monneuse, M.-O., Martin-Tanguy, J. and Tepfer, D. 1991. Changes in flowering and accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Sci. 80: 145–146.

    Article  CAS  Google Scholar 

  23. Mengoli, M., Chriqui, D. and Bagni, N., 1992. Protein, free amino acid and polyamine contents duling development of hairy root Nicotiana tabacum plants. J. Plant Physiol. 139: 697–702.

    Article  CAS  Google Scholar 

  24. Mengoli, M., Chiriqui, D. and Bagni, N. 1992. Putrescine biosynthesis and oxidation in normal and hairy root tobacco plants. J. Plant Physiol. 140: 153–155.

    Article  CAS  Google Scholar 

  25. White, F., Garfinkel, D., Huffman, G., Gordon, M. and Nester, E. 1983. Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301: 348–350.

    Article  CAS  Google Scholar 

  26. Furner, I., Huffman, G., Amasino, R., Garfunkel, D., Gordon, M. and Nester, E. 1986. An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319: 422–427.

    Article  CAS  Google Scholar 

  27. Oono, Y., Handa, T., Kanaya, K. and Uchimiya, H., 1987. The TL-DNA gene of Ri plasmids responsible for dwarfhess of tobacco plants. Japan. J. Genet. 62: 501–505.

    Google Scholar 

  28. Cardarelli, M., Mariotti, D., Pomponi, M., Spano, L., Capone, I. and Costantino, P. 1987. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol. Gen. Genet. 209: 475–480.

    Article  CAS  PubMed  Google Scholar 

  29. Schmülling, T., Schell, J. and Spena, A. 1988. Single genes from Agrobacterium rhizogenes influence plant development. EMBO J. 7: 2621–2629.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Spena, A., Estruch, J.J., Prinsen, E., Nacken, W., Vanonckelen, H. and Sommer, H. 1992. Anther-specific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content in anthers and alters anther development and whole flower growth. Theor. Appl. Genet. 4: 520–527.

    Article  Google Scholar 

  31. Vilaine, F., Charbonnier, C. and Casse-Delbart, F., 1987. Further insight concerning the TL-region of the Ri plasmid of Agrobacterium rhizogenes strain A4: transfer of a 1.9 kb fragment is sufficient to induce transformed roots on tobacco leaf fragments. Mol. Gen. Genet. 210: 111–115.

    Article  CAS  Google Scholar 

  32. Petit, A., David, C., Dahl, G., Ellis, J., Guyon, P., Casse-Delbart, F. and Tempé, J. 1983. Further extension of the opine concept: plasmids in Agro-bacterium rhizogenes co-operate for opine degradation. Mol. Gen. Genet. 190: 204–214.

    Article  CAS  Google Scholar 

  33. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  34. Collins, G. and Symons, R. 1992. Extraction of nuclear DNA from grape vine leaves by a modified procedure. Plant Mol. Biol. Reporter 10: 233–235.

    Article  CAS  Google Scholar 

  35. Southern, E. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Article  CAS  PubMed  Google Scholar 

  36. Jouanin, L. 1984. Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12: 91–102.

    Article  CAS  PubMed  Google Scholar 

  37. Ivanova, L. and Gorgiya, V. 1973. Dynamics of essential oil accumulation in several geranium species. Subtorop. Kul't 1: 160–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellegrineschi, A., Damon, JP., Valtorta, N. et al. Improvement of Ornamental Characters and Fragrance Production in Lemon-scented Geranium Through Genetic Transformation by Agrobacterium rhizogenes. Nat Biotechnol 12, 64–68 (1994). https://doi.org/10.1038/nbt0194-64

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0194-64

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing