Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Expression and Secretion in S. Cerevisiae of Biologically Active Leech Hirudin

Abstract

Hirudin synthesized by the medicinal leech Hirudo medicinalis is the most potent antithrombic factor found in nature. We have used Saccharomyces cerevisiae for the efficient production of recombinant hirudin variant 2 (rHV2). The mature hirudin coding sequence was placed in frame with the prepro sequence of the yeast MFα1 gene. Multicopy plasmids carrying different fused genes transcribed from the MFα1 promoter were used to transform a yeast strain selecting for uracil prototrophy. Analysis of proteins from culture supernatants revealed efficient secretion of hirudin in all cases. However, only precursors in which the HV2 mature sequence directly followed the cleavage site for yscF (a protease involved in the maturation of yeast α factor) were processed correctly to yield biologically active hirudin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walsmann, P. and Markwardt, F. 1981. Biochemische und pharmakologische Aspekte des Thrombininhibitors Hirudin. Die Pharmazie 36:653–660.

    CAS  PubMed  Google Scholar 

  2. Markwardt, F., Nowak, G., Sturzebecker, J., Griessbach, U., Walsmann, P., and Vogel, G. 1984. Pharmacokinetics and anticoagulant effect of hirudin in man. Thromb. Haemostas. 52:160–163.

    CAS  Google Scholar 

  3. Chang, J.Y. 1983. The functional domain of hirudin, a thrombin-specific inhibitor. FEES Lett. 164:307–313.

    Article  CAS  Google Scholar 

  4. Dodt, J., Mueller, H.P., Seemueller, U., and Chang, J.Y. 1984. The complete ammo acid sequence of hirudin, a thrombin specific inhibitor. FEBS Lett. 165:180–184.

    Article  CAS  Google Scholar 

  5. Dodt, J., Seemueller, U., Maschler, R., and Fritz, H. 1985. The complete covalent structure of hirudin. Biol. Chem. Hoppe Seyler 366:379–385.

    CAS  Google Scholar 

  6. Harvey, R.P., Degryse, E., Stefani, L., Schamber, F., Cazenave, J.P., Courtney, M., Tolstoshev, P., and Lecocq, J.P. 1986. Cloning and expression of a cDNA coding for the anticoagulant hirudin from the bloodsucking leech Hirudo medicinalis. Proc. Natl. Acad. Sci. USA 83:1084–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dodt, J., Machleidt, W., Seemueller, U., Maschler, R., and Fritz, H. 1986. Isolation and characterisation of hirudin isoinhibitors and sequence analysis of hirudin PA. Biol. Chem. Hoppe-Seyler 367:803–811.

    CAS  Google Scholar 

  8. Sukumaran, D.K., Clore, G.M., Preuss, A., Zarbock, J., and Gronen-born, A.M. 1987. Proton nuclear magnetic resonance study of hirudin: resonance assignment and secondary structure. Biochemistry 26:333–338.

    Article  CAS  Google Scholar 

  9. Dodt, J., Schmitz, T., Schaefer, T., and Bergman, C. 1986. Expression, secretion and processing of hirudin in E. coli using the alkaline phosphatase signal sequence. FEBS Lett. 202:373–377.

    Article  CAS  PubMed  Google Scholar 

  10. Fortkamp, E., Rieger, M., Heisterberg-Moutses, G., Schweitzer, S., and Sommer, R. 1986. Cloning and expression in Escherichia coli of a synthetic DNA for hirudin, the blood coagulation inhibitor in the leech. DNA 5:511–517.

    Article  CAS  PubMed  Google Scholar 

  11. McAleer, W.J., Buynack, E.B., Maigetter, R.Z., Wampler, D.E., Miller, W.J. and Hilleman, M.R. 1984. Human Hepatitis B vaccine from recombinant yeast. Nature 307:178–180.

    Article  CAS  PubMed  Google Scholar 

  12. Tuite, M.F., Dobson, M.J., Roberts, N.A., King, R.M., Burke, D.C., Kingsman, S.M., and Kingsman, A.J. 1982. Regulated high efficiency expression of human interferon-alpha in Saccharomyces cerevisiae. EMBO J. 1:603–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mellor, J., Dobson, M.J., Roberts, N.A., Tuite, M.F., Emtage, J.S., White, S., Lowe, P.A., Patel, T., Kingsman, A.J., and Kingsman, S.M. 1983. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24:1–14.

    Article  CAS  PubMed  Google Scholar 

  14. Rosenberg, S., Barr, P.J., Najarian, R.C., and Hallewell, R.A. 1984. Synthesis in yeast of a functional oxidation-resistant mutant of human α1-antitrypsin. Nature 312:77–80.

    Article  CAS  PubMed  Google Scholar 

  15. Kniskern, P.J., Hagopian, A., Montgomery, D.L., Burke, P., Dunn, N.R., Hofmann, K.J., Miller, W.J. and Ellis, R.W. 1986. Unusually high-level expression of a foreign gene (hepatitis B virus core antigen) in Saccharomyces cerevisiae. Gene 46:135–141.

    Article  CAS  PubMed  Google Scholar 

  16. Brake, A.J., Merryweather, J.P., Coit, D.G., Heberlein, U.A., Masiarz, F.R., Mullenbach, G.T., Urdea, M.S., Valenzuela, P., and Barr, P.J. 1984. α-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81:4642–4646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zsebo, K.M., Lu, H.S., Fieschko, J.C., Goldstein, L., Davis, J., Duker, K., Suggs, S.V., Lai, P.H., and Bitter, G.A. 1986. Protein secretion from Saccharomyces cerevisiae directed by the prepro-α-factor leader region. J. Biol. Chemistry 261:5858–5865.

    CAS  Google Scholar 

  18. Singh, A., Lugovoy, J.M., Kohr, W.J., and Perry, L.J. 1984. Synthesis, secretion and processing of α-factor interferon fusion proteins in yeast. Nucl. Acids Res. 12:8927–8938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyajima, A., Bond, M.W., Otsu, K., Arai, K.I., and Arai, N. 1985. Secretion of mature mouse interleukin-2 by Saccharomyces cerevisiae: Use of a general secretion vector containing promoter and leader sequences of the mating pheromone α-factor. Gene 37:155–161.

    Article  CAS  PubMed  Google Scholar 

  20. Innis, M.A., Holland, M.J., McCabe, P.C., Cole, G.E., Wittman, V.P., Tal, R., Watt, K.W.K., Gelfand, D.H., Holland, J.P., and Meade, J.H. 1985. Expression, glycosylation, and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae. Science 228:21–26.

    Article  CAS  PubMed  Google Scholar 

  21. Vlasuk, G.P., Bencen, G.H., Scarborough, R.M., Tsai, P.K., Whang, J.L., Maack, T., Camargo, M.J.F., Kirsher, S.W., and Abraham, J.A. 1986. Expression and secretion of biologically active human atrial natriuretic peptide in Saccharomyces cerevisiae. J. Biol. Chem. 261:4789–4796.

    CAS  PubMed  Google Scholar 

  22. Thim, L., Hansen, M.T., Norris, K., Hoegh, I., Boel, E., Forstrom, J., Ammerer, G., and Fiil, N.P. 1986. Secretion and processing of insulin precursors in yeast. Proc. Natl. Acad. Sci. USA 83:6766–6770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Arsdell, J.N., Kwok, S., Schweickart, V.L., Ladner, M.B., Gelfand, D.H., and Innis, M.A. 1987. Cloning, characterization, and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei. Bio/Technology 5:60–64.

    CAS  Google Scholar 

  24. Sumner-Smith, M., Bozzato, R.P., Skipper, N., Wayne-Davis, R., and Hopper, J.E. 1985. Analysis of the inducible MEL1 of Saccharomyces carlsbergensis and its secreted product alpha-galactosidase (melibiase). Gene 36:333–340.

    Article  CAS  PubMed  Google Scholar 

  25. Liljestrom, P.L. 1985. The nucleotide sequence of the yeast MEL1 gene. Nucl. Acids Res. 13:7257–7268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meaden, P., Ogden, K., Bussey, H., and Tubb, R.S. 1985. A DEX gene conferring production of extracellular amyloglucosidase on yeast. Gene 34:325–334.

    Article  CAS  PubMed  Google Scholar 

  27. Yamashita, I., Maemura, T., Hatano, T., and Fukui, S. 1985. Polymorphic extracellular glucoamylase genes and their evolutionary origin in the yeast S. diastaticus. J. Bacteriol. 161:574–582.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wickner, R.B. 1985. Killer Yeasts. Curr. Top. Med. Mycol. 1:286–312.

    Article  CAS  PubMed  Google Scholar 

  29. Thorner, J. 1981. Pheromonal regulation of development in Saccharomyces cerevisiae. In: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance. Strathern J. N., Jones, E. W., and Broach, J. R. (eds.). Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  30. Kurjan, J., and Herskowitz, I. 1982. Structure of a yeast pheromone gene (MFα) a putative alpha-factor precursor contains four tandem copies of mature alpha factor. Cell 30:933–943.

    Article  CAS  PubMed  Google Scholar 

  31. Julius, D.J., Scheckman, R., and Thorner, J. 1984. Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Cell 36:309–318.

    Article  CAS  PubMed  Google Scholar 

  32. Lemoine, Y., Courtney, M., and Lecocq, J.P. 1987. Biotechnology: Vectors for gene expression in microorganisms. Fifth International Symposium on the Genetics of Industrial Microorganisms. M. Alacevic, D. Hranueli, Z. Toman (eds.) Pliva Zagreb, pp. 39–49.

  33. Julius, D.J., Brake, A.J., Blair, L., Kunisawa, R., and Thorner, J. 1984. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor. Cell 37:1075–1089.

    Article  CAS  PubMed  Google Scholar 

  34. Achstetter, T., and Wolf, D.H. 1985. Hormone processing and membrane-bound proteinases in yeast. EMBO J. 4:173–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loison, G., Nguyen-Juilleret, M., Alouani, S., and Marquet, M. 1986. Plasmid-transformed ura3 furl double-mutants of S. cerevisiae: An autoselection system applicable to the production of foreign proteins. Bio/Technology 4:433–438.

    CAS  Google Scholar 

  36. Clowes, R.C., and Hayes, W. 1968. Experiments in Microbial Genetics, p. 187. Wiley, New York.

    Google Scholar 

  37. Beggs, J.D. 1981. Gene cloning in yeast, p. 175–203. In: Genetic engineering, Vol. 2. Williamson R. (ed.). Academic Press, London, UK.

    Google Scholar 

  38. Broach, J.R. 1981. The yeast plasmid 2 μ circle. In: The Molecular Biology of the Yeast-Saccharomyces: Life Cycle and Inheritance. Strathern, J. N., Jones, E. W., and Broach, J. R. (eds.). Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  39. Sutcliffe, J.G. 1979. Complete nucleotide sequence of the E. coli plasmid pBR322. Cold Spring Harbor Symp. Quant. Biol. 43:77–90.

    Article  CAS  PubMed  Google Scholar 

  40. Rose, M., Grisafi, P., and Botstein, D. 1984. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene 29:113–124.

    Article  CAS  PubMed  Google Scholar 

  41. Hitzeman, R.A., Hagie, F.E., Hayflick, J.S., Chen, C.Y., Seeburg, P.H., and Derynck, R. 1982. The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nucl. Acids Res. 10:7791–7808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Messing, J. and Vieira, J. 1982. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19:269–276.

    Article  CAS  PubMed  Google Scholar 

  43. Zoller, J.M. and Smith, M. 1982. Oligonucleotide directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzym. 100:467–500.

    Google Scholar 

  44. Clewell, D.B. 1972. Nature of ColEl replication in E. coli in the presence of chloramphenicol. J. Bacteriol. 110:667–672.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular Cloning. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  46. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cohen, S.N., Chiang, A.C.Y., and Hsu, L. 1972. Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of E. coli by R factor DNA. Proc. Natl. Acad. Sci. USA 69:2110–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peters, M.A., Lau, E.P., Snitman, D.L., Van Wyk, J.J., Underwood, E., Russel, W.E., and Svoboda, M.E. 1985. Expression of a biologically active analogue of somatomedin-C/insulin-like growth factor I. Gene 35:83–89.

    Article  CAS  PubMed  Google Scholar 

  49. Knecht, R., Seemueller, U., Liersch, M., Fritz, H., Braun, D.G., and Chang, J.Y. 1983. Sequence determination of eglinC using microtechniques of amino acid analysis, peptide isolation and automatic Edman degradation. Analytical Biochem. 130:65–71.

    Article  CAS  Google Scholar 

  50. Bidlingmeyer, B.A., Cohen, S.A. and Tarvin, T.L. 1984. Rapid analysis of amino acids using pre-column derivatization. J. of Chromatog. 336:93–104.

    Article  CAS  Google Scholar 

  51. Laemmli, U.K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 277:680–685.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loison, G., Findeli, A., Bernard, S. et al. Expression and Secretion in S. Cerevisiae of Biologically Active Leech Hirudin. Nat Biotechnol 6, 72–77 (1988). https://doi.org/10.1038/nbt0188-72

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0188-72

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing