Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biocon's target factory

South Korea's 8-year effort to create an integrated platform for novel target and lead development provides an academic drug discovery model for other emerging economies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Biocon in the context of other Korea's national programs to facilitate drug discovery.
Figure 2: Selection process for the Global Frontier Project and Biocon.
Figure 3: The promise of ARSs as therapeutic targets.
Figure 4: Biocon's team structure is functionally divided between core and external specialist groups.
Figure 5: Biocon's six key criteria for target validation.
Figure 6: Representative discoveries in the core target biology (focusing on ARS biology) and innovative technologies applicable to the processes of drug discovery are shown.
Figure 7: Biocon's therapeutic, diagnostic and technological pipelines.

References

  1. 1

    Organisation for Economic Co-operation and Development. OECD Education at a Glance 2014 (OECD Publishing, 2014).

  2. 2

    Shin, S.M. et al. Nat. Commun. 8, 15090 (2017).

    Article  Google Scholar 

  3. 3

    Park, M.C. et al. Cancer Res. 76, 1044–1054 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Choe, K. et al. J. Clin. Invest. 125, 4042–4052 (2015).

    Article  Google Scholar 

  5. 5

    Lee, J. et al. Nano Lett. 15, 2938–2944 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Yang, A. et al. Science 354, 623–626 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Fang, P. et al. Nat. Commun. 6, 6402 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Zhou, H., Sun, L., Yang, X.L. & Schimmel, P. Nature 494, 121–124 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Son, J. et al. Acta Crystallogr. D Biol. Crystallogr. 69, 2136–2145 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Schimmel, P., Tao, J. & Hill, J. FASEB J. 12, 1599–1609 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Rock, F.L. et al. Science 316, 1759–1761 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Novoa, E.M. et al. Proc. Natl. Acad. Sci. USA 111, E5508–E5517 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Park, J.S. et al. Circulation 136, A24036 (2017).

    Google Scholar 

  14. 14

    Park, M.C. et al. Proc. Natl. Acad. Sci. USA 109, E640–E647 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Ahn, Y.H. et al. Nat. Microbiol. 2, 16191 (2016).

    CAS  Article  Google Scholar 

  16. 16

    Kim, S.B. et al. J. Cell Biol. 216, 2201–2216 (2017).

    CAS  Article  Google Scholar 

  17. 17

    Ko, Y.G. et al. J. Biol. Chem. 276, 6030–6036 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Han, J.M. et al. Cell 149, 410–424 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Kim, D.G. et al. FASEB J. 26, 4142–4159 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Kwon, N.H. et al. ACS Pharmacol. Transl. Sci. https://doi.org/10.1021/acsptsci.8b00001 (2018).

    CAS  Article  Google Scholar 

  21. 21

    Kim, S., You, S. & Hwang, D. Nat. Rev. Cancer 11, 708–718 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Choi, J.W. et al. PLoS Genet. 7, e1001351 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Choi, J.W. et al. J. Mol. Cell Biol. 4, 164–173 (2012).

    Article  Google Scholar 

  24. 24

    Lee, H.S. et al. Biochem. J. 454, 411–416 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Park, S.G., Ewalt, K.L. & Kim, S. Trends Biochem. Sci. 30, 569–574 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Kang, T. et al. J. Mol. Biol. 423, 475–481 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Kim, J.H. et al. Nat. Commun. 8, 732 (2017).

    Article  Google Scholar 

  28. 28

    Kim, D.G. et al. Nat. Chem. Biol. 10, 29–34 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Jeong, S.J. et al. Exp. Mol. Med. 50, e424 (2018).

    CAS  Article  Google Scholar 

  30. 30

    Lee, E.Y. et al. Nat. Immunol. 17, 1252–1262 (2016).

    CAS  Article  Google Scholar 

  31. 31

    Kim, J. et al. Nat. Mater. 10, 747–752 (2011).

    CAS  Article  Google Scholar 

  32. 32

    Park, J., Oh, S. & Park, S.B. Angew. Chem. Int. Ed. Engl. 51, 5447–5451 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Han, S. et al. Adv. Mater. 24, 5924–5929 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Global Frontier Project grant (NRF-M3A6A4-2010-0029785).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neenan, T., Burrier, R. & Kim, S. Biocon's target factory. Nat Biotechnol 36, 791–797 (2018). https://doi.org/10.1038/nbt.4242

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing