Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice

Abstract

Staphylococcus aureus and other staphylococci continue to cause life-threatening infections in both hospital and community settings1,2,3. They have become increasingly resistant to antibiotics, especially β-lactams and aminoglycosides, and their infections are now, in many cases, untreatable. Here we present a non-antibiotic, non-phage method of treating staphylococcal infections by engineering of the highly mobile staphylococcal pathogenicity islands (SaPIs). We replaced the SaPIs' toxin genes with antibacterial cargos to generate antibacterial drones (ABDs) that target the infecting bacteria in the animal host, express their cargo, kill or disarm the bacteria and thus abrogate the infection. Here we have constructed ABDs with either a CRISPR–Cas9 bactericidal or a CRISPR–dCas9 virulence-blocking module. We show that both ABDs block the development of a murine subcutaneous S. aureus abscess and that the bactericidal module rescues mice given a lethal dose of S. aureus intraperitoneally.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: SaPI and ABD structures.
Figure 2: ABD activities in vitro.
Figure 3: ABD blockade or cure of murine infections.

References

  1. 1

    Kennedy, A.D. et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc. Natl. Acad. Sci. USA 105, 1327–1332 (2008).

    CAS  Article  Google Scholar 

  2. 2

    King, M.D. et al. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann. Intern. Med. 144, 309–317 (2006).

    Article  Google Scholar 

  3. 3

    Gould, I.M. et al. New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int. J. Antimicrob. Agents 39, 96–104 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Lindsay, J.A., Ruzin, A., Ross, H.F., Kurepina, N. & Novick, R.P. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29, 527–543 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Tallent, S.M., Langston, T.B., Moran, R.G. & Christie, G.E. Transducing particles of Staphylococcus aureus pathogenicity island SaPI1 are comprised of helper phage-encoded proteins. J. Bacteriol. 189, 7520–7524 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Tormo-Más, M.A. et al. Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature 465, 779–782 (2010).

    Article  Google Scholar 

  7. 7

    Ruzin, A., Lindsay, J. & Novick, R.P. Molecular genetics of SaPI1—a mobile pathogenicity island in Staphylococcus aureus. Mol. Microbiol. 41, 365–377 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Wang, H., La Russa, M. & Qi, L.S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Novick, R.P. & Geisinger, E. Quorum sensing in staphylococci. Annu. Rev. Genet. 42, 541–564 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Ji, G., Beavis, R.C. & Novick, R.P. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92, 12055–12059 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Chen, J. & Novick, R.P. Phage-mediated intergeneric transfer of toxin genes. Science 323, 139–141 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Chen, J., Ram, G., Penadés, J.R., Brown, S. & Novick, R.P. Pathogenicity island-directed transfer of unlinked chromosomal virulence genes. Mol. Cell 57, 138–149 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Wright, J.S. III, Lyon, G.J., George, E.A., Muir, T.W. & Novick, R.P. Hydrophobic interactions drive ligand-receptor recognition for activation and inhibition of staphylococcal quorum sensing. Proc. Natl. Acad. Sci. USA 101, 16168–16173 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Bunce, C., Wheeler, L., Reed, G., Musser, J. & Barg, N. Murine model of cutaneous infection with gram-positive cocci. Infect. Immun. 60, 2636–2640 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Brouillette, E. et al. DNA immunization against the clumping factor A (ClfA) of Staphylococcus aureus. Vaccine 20, 2348–2357 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Ryan, E.M., Gorman, S.P., Donnelly, R.F. & Gilmore, B.F. Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J. Pharm. Pharmacol. 63, 1253–1264 (2011).

    CAS  Article  Google Scholar 

  17. 17

    Winstel, V. et al. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat. Commun. 4, 2345–2354 (2013).

    Article  Google Scholar 

  18. 18

    O'Flaherty, S. et al. Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G+C content. J. Bacteriol. 186, 2862–2871 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Labrie, S.J., Samson, J.E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Mayville, P. et al. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA 96, 1218–1223 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Weil, J., Cunningham, R., Martin, R. III, Mitchell, E. & Bolling, B. Characteristics of lambda p4, a lambda derivative containing 9 per cent excess DNA. Virology 50, 373–380 (1972).

    CAS  Article  Google Scholar 

  22. 22

    Frischauf, A.M., Lehrach, H., Poustka, A. & Murray, N. Lambda replacement vectors carrying polylinker sequences. J. Mol. Biol. 170, 827–842 (1983).

    CAS  Article  Google Scholar 

  23. 23

    Citorik, R.J., Mimee, M. & Lu, T.K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Novick, R.P. Genetic systems in staphylococci. Methods Enzymol. 204, 587–636 (1991).

    CAS  Article  Google Scholar 

  26. 26

    Stocker, B.A. Abortive transduction of motility in Salmonella; a nonreplicated gene transmitted through many generations to a single descendant. J. Gen. Microbiol. 15, 575–598 (1956).

    CAS  Article  Google Scholar 

  27. 27

    Ozeki, H. Chromosome fragments participating in transduction in Salmonella Typhimurium. Genetics 44, 457–470 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Arber, W. Transduction of chromosomal genes and episomes in Escherichia coli. Virology 11, 273–288 (1960).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01-AI22159 to RPN and by a grant-in-aid from NYU School of Medicine. The animal experiments described in this paper were conducted in conformity with all relevant ethical regulations, under IACUC protocol 160722-01, approved by the NYUSOM IACUC on 7/21/16.

Author information

Affiliations

Authors

Contributions

R.P.N., H.F.R. and G.R. planned and discussed the experiments. H.F.R. had the initial idea; G.R. and H.F.R. did the cloning; G.R. performed the in vitro tests; I.R.-P. and R.P.N. did the mouse experiments; D.J. did the DNA preparations; and R.P.N. did the microbiological work and wrote the manuscript.

Corresponding authors

Correspondence to Geeta Ram or Hope F Ross or Richard P Novick.

Ethics declarations

Competing interests

A patent application has been filed by New York University, with G.R., H.F.R. and R.P.N. as inventors, on the basis of results presented in this paper.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ram, G., Ross, H., Novick, R. et al. Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice. Nat Biotechnol 36, 971–976 (2018). https://doi.org/10.1038/nbt.4203

Download citation

Further reading