Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops

Abstract

The ‘natural refuge strategy” for delaying insect resistance to transgenic cotton that produces insecticidal proteins from Bacillus thuringiensis (Bt) relies on refuges of host plants other than cotton that do not make Bt toxins. We tested this widely adopted strategy by comparing predictions from modeling with data from a four-year field study of cotton bollworm (Helicoverpa armigera) resistance to transgenic cotton producing Bt toxin Cry1Ac in six provinces of northern China. Bioassay data revealed that the percentage of resistant insects increased from 0.93% in 2010 to 5.5% in 2013. Modeling predicted that the percentage of resistant insects would exceed 98% in 2013 without natural refuges, but would increase to only 1.1% if natural refuges were as effective as non-Bt cotton refuges. Therefore, the results imply that natural refuges delayed resistance, but were not as effective as an equivalent area of non-Bt cotton refuges. The percentage of resistant insects with nonrecessive inheritance of resistance increased from 37% in 2010 to 84% in 2013. Switching to Bt cotton producing two or more toxins and integrating other control tactics could slow further increases in resistance.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Computer simulations of the effect of natural refuges and dominance on evolution of resistance to Bt cotton by H. armigera in northern China.
Figure 2: Computer simulations of the effect of refuge percentage on evolution of resistance to Bt cotton by H. armigera in northern China.
Figure 3: Observed versus predicted evolution of resistance to Bt cotton by H. armigera in northern China.
Figure 4: Survival at a diagnostic concentration of Cry1Ac for F1 progeny of H. armigera from 17 sites in six provinces of northern China.
Figure 5: Experimental design for estimating the percentage of resistant individuals with nonrecessive resistance.
Figure 6: Performance on Bt cotton plants of H. armigera from a susceptible strain (SCD), a resistant strain derived from a field-selected population in northern China (AY), and their F1 progeny (AY × SCD).

References

  1. James, C. Global status of commercialized biotech/GM Crops: 2013. ISAAA Briefs 46 (ISAAA, Ithaca, NY, 2013).

  2. Bagla, P. Hardy cotton-munching pests are latest blow to GM crops. Science 327, 1439 (2010).

    CAS  Article  PubMed  Google Scholar 

  3. Alyokhin, A. Scant evidence supports EPA's pyramided Bt corn refuge size of 5%. Nat. Biotechnol. 29, 577–578 (2011).

    CAS  PubMed  Google Scholar 

  4. Gilbert, N. A hard look at GM crops. Nature 497, 24–26 (2013).

    CAS  Article  PubMed  Google Scholar 

  5. Sanahuja, G., Banakar, R., Twyman, R., Capell, T. & Christou, P. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9, 283–300 (2011).

    CAS  PubMed  Google Scholar 

  6. Pardo-López, L., Soberón, M. & Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 37, 3–22 (2013).

    Article  PubMed  Google Scholar 

  7. Mendelsohn, M., Kough, J., Vaituzis, Z. & Matthews, K. Are Bt crops safe? Nat. Biotechnol. 21, 1003–1009 (2003).

    CAS  Article  PubMed  Google Scholar 

  8. Comas, C., Lumbierres, B., Pons, X. & Albajes, R. No effects of Bacillus thuringiensis maize on nontarget organisms in the field in southern Europe: a meta-analysis of 26 arthropod taxa. Transgenic Res. 23, 135–143 (2014).

    CAS  Article  PubMed  Google Scholar 

  9. Carpenter, J.E. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat. Biotechnol. 28, 319–321 (2010).

    CAS  Article  PubMed  Google Scholar 

  10. Hutchison, W.D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).

    CAS  Article  PubMed  Google Scholar 

  11. Tabashnik, B.E. et al. Suppressing resistance to Bt cotton with sterile insect releases. Nat. Biotechnol. 28, 1304–1307 (2010).

    CAS  Article  PubMed  Google Scholar 

  12. Edgerton, M.D. et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30, 493–496 (2012).

    CAS  Article  PubMed  Google Scholar 

  13. Kathage, J. & Qaim, M. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proc. Natl. Acad. Sci. USA 109, 11652–11656 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Lu, Y., Wu, K., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).

    CAS  Article  PubMed  Google Scholar 

  15. Storer, N.P., Kubiszak, M.E., Ed King, J., Thompson, G.D. & Santos, A.C. Status of resistance to Bt maize in Spodoptera frugiperda: Lessons from Puerto Rico. J. Invertebr. Pathol. 110, 294–300 (2012).

    Article  PubMed  Google Scholar 

  16. Tabashnik, B.E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521 (2013).

    CAS  Article  PubMed  Google Scholar 

  17. Van den Berg, J., Hilbeck, A. & Bøhn, T. Pest resistance to Cry1Ab Bt maize: Field resistance, contributing factors and lessons from South Africa. Crop Prot. 54, 154–160 (2013).

    Article  Google Scholar 

  18. Gassmann, A.J. et al. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc. Natl. Acad. Sci. USA 111, 5141–5146 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).

    CAS  Article  PubMed  Google Scholar 

  20. Tabashnik, B.E. Delaying insect resistance to transgenic crops. Proc. Natl. Acad. Sci. USA 105, 19029–19030 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Tabashnik, B.E., Gassmann, A.J., Crowder, D.W. & Carrière, Y. Insect resistance to Bt crops: evidence versus theory. Nat. Biotechnol. 26, 199–202 (2008).

    CAS  Article  PubMed  Google Scholar 

  22. Tabashnik, B.E., Van Rensburg, J.B.J. & Carrière, Y. Field-evolved insect resistance to Bt crops: definition, theory, and data. J. Econ. Entomol. 102, 2011–2025 (2009).

    CAS  Article  PubMed  Google Scholar 

  23. Downes, S. et al. Adaptive management of pest resistance by Helicoverpa species (Noctuidae) in Australia to the Cry2Ab Bt toxin in Bollgard II® cotton. Evol. Appl. 3, 574–584 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu, K., Lu, Y., Feng, H., Jiang, Y. & Zhao, J.Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321, 1676–1678 (2008).

    CAS  Article  PubMed  Google Scholar 

  25. Wu, K. & Guo, Y. The evolution of cotton pest management practices in China. Annu. Rev. Entomol. 50, 31–52 (2005).

    CAS  Article  PubMed  Google Scholar 

  26. Wu, K., Guo, Y. & Gao, S. Evaluation of the natural refuge function for Helicoverpa armigera (Lepidoptera: Noctuidae) within Bacillus thuringiensis transgenic cotton growing areas in north China. J. Econ. Entomol. 95, 832–837 (2002).

    Article  PubMed  Google Scholar 

  27. Huang, J.K., Rozelle, S., Pray, C. & Wang, Q.F. Plant biotechnology in China. Science 295, 674–676 (2002).

    CAS  Article  PubMed  Google Scholar 

  28. Li, G.-P. et al. Increasing tolerance to Cry1Ac cotton from cotton bollworm, Helicoverpa armigera, was confirmed in Bt cotton farming area of China. Ecol. Entomol. 32, 366–375 (2007).

    Article  Google Scholar 

  29. Yang, Y., Chen, H., Wu, Y., Yang, Y. & Wu, S. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Appl. Environ. Microbiol. 73, 6939–6944 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. An, J. et al. Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region. J. Econ. Entomol. 103, 2169–2173 (2010).

    Article  PubMed  Google Scholar 

  31. Li, G., Feng, H., Gao, Y., Wyckhuys, K.A. & Wu, K. Frequency of Bt resistance alleles in Helicoverpa armigera in the Xinjiang cotton-planting region of China. Environ. Entomol. 39, 1698–1704 (2010).

    Article  PubMed  Google Scholar 

  32. Liu, F. et al. Evidence of field-evolved resistance to Cry1Ac-expressing Bt cotton in Helicoverpa armigera (Lepidoptera: Noctuidae) in northern China. Pest Manag. Sci. 66, 155–161 (2010).

    CAS  Article  PubMed  Google Scholar 

  33. Zhang, H. et al. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS ONE 6, e22874 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang, H. et al. Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proc. Natl. Acad. Sci. USA 109, 10275–10280 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Jin, L. et al. Dominant resistance to Bt cotton and minor cross-resistance to Bt toxin Cry2Ab in cotton bollworm from China. Evol. Appl. 6, 1222–1235 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang, H., Tang, M., Yang, F., Yang, Y. & Wu, Y. DNA-based screening for an intracellular cadherin mutation conferring non-recessive Cry1Ac resistance in field populations of Helicoverpa armigera . Pestic. Biochem. Physiol. 107, 148–152 (2013).

    CAS  Article  PubMed  Google Scholar 

  37. Behere, G.T. et al. Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea . BMC Evol. Biol. 7, 117 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, H., Wu, S., Yang, Y., Tabashnik, B.E. & Wu, Y. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm. PLoS ONE 7, e53418 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Ravi, K.C. et al. Relative abundance of Helicoverpa armigera (Lepidoptera: Noctuidae) on different host crops in India and the role of these crops as natural refuge for Bacillus thuringiensis cotton. Environ. Entomol. 34, 59–69 (2005).

    Article  Google Scholar 

  40. Gould, F. et al. Bacillus thuringiensis-toxin resistance management: stable isotope assessment of alternate host use by Helicoverpa zea . Proc. Natl. Acad. Sci. USA 99, 16581–16586 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Brévault, T., Nibouche, S., Achaleke, J. & Carrière, Y. Assessing the role of non-cotton refuges in delaying Helicoverpa armigera resistance to Bt cotton in West Africa. Evol. Appl. 5, 53–65 (2012).

    Article  PubMed  Google Scholar 

  42. US Environmental Protection Agency. Pesticides news story: EPA approves natural refuges for insect resistance management in Bollgard II cotton. http://www.epa.gov/oppfead1/cb/csb_page/updates/2007/bollgard-cotton.htm (EPA, 2007).

  43. Wan, P. et al. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China. PLoS ONE 7, e29975 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Liu, Y. & Tabashnik, B.E. Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl. Environ. Microbiol. 63, 2218–2223 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gustafson, D.I., Head, G.P. & Caprio, M.A. Modeling the impact of alternative hosts on Helicoverpa zea adaptation to Bollgard cotton. J. Econ. Entomol. 99, 2116–2124 (2006).

    Article  PubMed  Google Scholar 

  46. Carrière, Y. & Tabashnik, B.E. Reversing insect adaptation to transgenic insecticidal plants. Proc. R. Sci. 268, 1475–1480 (2001).

    Article  Google Scholar 

  47. Tabashnik, B.E., Dennehy, T.J. & Carrière, Y. Delayed resistance to transgenic cotton in pink bollworm. Proc. Natl. Acad. Sci. USA 102, 15389–15393 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Tabashnik, B.E. & Croft, B.A. Managing pesticide resistance in crop-arthropod complexes: interactions between biological and operational factors. Environ. Entomol. 11, 1137–1144 (1982).

    Article  Google Scholar 

  49. Tay, W.T. et al. A brave new world for an Old World pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS ONE 8, e80134 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mahon, R.J., Downes, S.J. & James, B. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin. PLoS ONE 7, e39192 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Tabashnik, B.E., Crowder, D.W. & Carrière, Y. Modeling evolution of insect resistance to genetically modified crops. Nat. Protoc. Network doi:10.1038/nprot.2008.125, http://www.nature.com/protocolexchange/protocols/462 (19 June 2008).

  52. Ge, F., Chen, F., Parajulee, M.N. & Yardim, E.N. Quantification of diapausing fourth generation and suicidal fifth generation cotton bollworm, Helicoverpa armigera, in cotton and corn in northern China. Entomol. Exp. Appl. 116, 1–7 (2005).

    Article  Google Scholar 

  53. Feng, H., Gould, F., Huang, Y., Jiang, Y. & Wu, K. Modeling the population dynamics of cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) over a wide area in northern China. Ecol. Modell. 221, 1819–1830 (2010).

    Article  Google Scholar 

  54. Feng, H., Wu, X., Wu, B. & Wu, K. Seasonal migration of Helicoverpa armigera over the Bohai Sea. J. Econ. Entomol. 102, 95–104 (2009).

    Article  PubMed  Google Scholar 

  55. Hartl, D.L. & Clark, A.G. Principles of Population Genetics edn. 2 (Sinauer, Sunderland, MA, 1989).

  56. Liu, Y.B. et al. Effects of Bt cotton and CrylAc toxin on survival and development of pink bollworm (Lepidoptera: Gelechiidae). J. Econ. Entomol. 94, 1237–1242 (2001).

    CAS  Article  PubMed  Google Scholar 

  57. Bird, L.J. & Akhurst, R.J. Effects of host plant species on fitness costs of Bt resistance in Helicoverpa armigera (Lepidoptera: Noctuidae). Biol. Control 40, 196–203 (2007).

    Article  Google Scholar 

  58. Liang, G.M. et al. Changes of inheritance mode and fitness in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) along with its resistance evolution to Cry1Ac toxin. J. Invertebr. Pathol. 97, 142–149 (2008).

    CAS  Article  PubMed  Google Scholar 

  59. Cao, G. et al. Quantitative analysis of fitness costs associated with the development of resistance to the Bt toxin Cry1Ac in Helicoverpa armigera . Sci. Rep. 4, 5629 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Wu, K., Feng, H. & Guo, Y. Evaluation of maize as a refuge for management of resistance to Bt cotton by Helicoverpa armigera (Hübner) in the Yellow River cotton-farming region of China. Crop Prot. 23, 523–530 (2004).

    Article  Google Scholar 

  61. Yang, Y.-H. et al. Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry1Ac. Bull. Entomol. Res. 99, 175–181 (2009).

    CAS  Article  PubMed  Google Scholar 

  62. Wan, P., Zhang, Y.J., Wu, K.M. & Huang, M.S. Seasonal expression profiles of insecticidal protein and control efficacy against Helicoverpa armigera for Bt cotton in the Yangtze River valley of China. J. Econ. Entomol. 98, 195–201 (2005).

    CAS  Article  PubMed  Google Scholar 

  63. Newcombe, R.G. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Stat. Med. 17, 857–872 (1998).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Sisterson and three anonymous reviewers for their comments that improved the manuscript. This work was funded by grants from the Ministry of Agriculture of China (2014ZX08012-004), the National Natural Science Foundation of China (31071983 and 31321004), the 111 program of China (B07030) and the US Department of Agriculture Biotechnology Risk Assessment Grants program (2011-33522-30729). We thank M.P. Carey (Case Western Reserve University, USA) for providing activated Cry1Ac toxin.

Author information

Authors and Affiliations

Authors

Contributions

Y.W., K.W., Y.Y. and B.E.T. contributed to research design; L.J., H.Z. and Y.L. conducted experiments; B.E.T. conducted computer simulations; Y.W., B.E.T., K.W., L.J. and Y.Y. analyzed data. Y.W. and B.E.T. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yidong Wu.

Ethics declarations

Competing interests

B.E.T. is coauthor of a patent on modified Bt toxins, “Suppression of Resistance in Insects to Bacillus thuringiensis Cry Toxins, Using Toxins that do not Require the Cadherin Receptor” (patent numbers: CA2690188A1, CN101730712A, EP2184293A2, EP2184293A4, EP2184293B1, WO2008150150A2, WO2008150150A3). Pioneer, Dow AgroSciences, Monsanto and Bayer CropScience did not provide funding to support this work, but may be affected financially by publication of this paper and have funded other work by B.E.T.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1–6 (PDF 4811 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Zhang, H., Lu, Y. et al. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nat Biotechnol 33, 169–174 (2015). https://doi.org/10.1038/nbt.3100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3100

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing