Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting


Functional analysis of genome sequences requires methods for cloning DNA of interest. However, existing methods, such as library cloning and screening, are too demanding or inefficient for high-throughput application to the wealth of genomic data being delivered by massively parallel sequencing. Here we describe direct DNA cloning based on the discovery that the full-length Rac prophage protein RecE and its partner RecT mediate highly efficient linear-linear homologous recombination mechanistically distinct from conventional recombineering mediated by Redαβ from lambda phage or truncated versions of RecET. We directly cloned all ten megasynthetase gene clusters (each 10–52 kb in length) from Photorhabdus luminescens into expression vectors and expressed two of them in a heterologous host to identify the metabolites luminmycin A and luminmide A/B. We also directly cloned cDNAs and exactly defined segments from bacterial artificial chromosomes. Direct cloning with full-length RecE expands the DNA engineering toolbox and will facilitate bioprospecting for natural products.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Full-length RecE mediates recombination between two substrates.
Figure 2: Full-length RecE plus RecT is required for enhanced LLHR.
Figure 3: LCHR and LLHR are mechanistically different.
Figure 4: Evaluation of different configurations of inducible recombinase expression.
Figure 5: Expression of directly cloned PKS-NRPS biosynthetic gene clusters.
Figure 6: A two-step, double recombination 'fishing' strategy enhances the identification of desired products.


  1. 1

    Bode, H.B. & Müller, R. The impact of bacterial genomics on natural product research. Angew. Chem. Int. Ed. Engl. 44, 6828–6846 (2005).

  2. 2

    Koonin, E.V. & Wolf, Y.I. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 36, 6688–6719 (2008).

  3. 3

    Lagesen, K., Ussery, D.W. & Wassenaar, T.M. Genome update: the 1000th genome–a cautionary tale. Microbiology 156, 603–608 (2010).

  4. 4

    Banik, J.J. & Brady, S.F. Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr. Opin. Microbiol. 13, 603–609 (2010).

  5. 5

    Simon, C. & Daniel, R. Metagenomic analyses: past and future trends. Appl. Environ. Microbiol. 77, 1153–1161 (2011).

  6. 6

    Donadio, S., Monciardini, P. & Sosio, M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat. Prod. Rep. 24, 1073–1109 (2007).

  7. 7

    Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Edn Engl. 48, 4688–4716 (2009).

  8. 8

    Fischbach, M.A. & Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

  9. 9

    Zhumabayeva, B., Chenchik, A. & Siebert, P.D. RecA-mediated affinity capture: a method for full-length cDNA cloning. Biotechniques 27, 834 (1999).

  10. 10

    Demidov, V.V. et al. Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids. Proc. Natl. Acad. Sci. USA 99, 5953–5958 (2002).

  11. 11

    Ito, T., Smith, C.L. & Cantor, C.R. Sequence-specific DNA purification by triplex affinity capture. Proc. Natl. Acad. Sci. USA 89, 495–498 (1992).

  12. 12

    Kouprina, N. & Larionov, V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat. Protoc. 3, 371–377 (2008).

  13. 13

    Zhang, Y., Muyrers, J.P.P., Testa, G. & Stewart, A.F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314–1317 (2000).

  14. 14

    Yonemura, I. et al. Direct cloning of full-length mouse mitochondrial DNA using a Bacillus subtilis genome vector. Gene 391, 171–177 (2007).

  15. 15

    Zhang, Y., Buchholz, F., Muyrers, J.P. & Stewart, F.A. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

  16. 16

    Muyrers, J.P.P., Zhang, Y., Testa, G. & Stewart, A.F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res. 27, 1555–1557 (1999).

  17. 17

    Copeland, N.G., Jenkins, N.A. & Court, D.L. Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2, 769–779 (2001).

  18. 18

    Muyrers, J.P., Zhang, Y., Buchholz, F. & Stewart, A.F. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev. 14, 1971–1982 (2000).

  19. 19

    Testa, G. et al. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat. Biotechnol. 21, 443–447 (2003).

  20. 20

    Wang, J. et al. An improved recombineering approach by adding RecA to lambda Red recombination. Mol. Biotechnol. 32, 43–53 (2006).

  21. 21

    Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844 (2006).

  22. 22

    Fu, J., Teucher, M., Anastassiadis, K., Skarnes, W. & Stewart, A.F. A recombineering pipeline to make conditional targeting constructs. Methods Enzymol. 477, 125–144 (2010).

  23. 23

    Kovall, R. & Matthews, B.W. Toroidal structure of lambda-exonuclease. Science 277, 1824–1827 (1997).

  24. 24

    Chu, C.C., Templin, A. & Clark, A.J. Suppression of a frameshift mutation in the recE gene of Escherichia coli K-12 occurs by gene fusion. J. Bacteriol. 171, 2101–2109 (1989).

  25. 25

    Zhang, J.J., Xing, X., Herr, A.B. & Bell, C.E. Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks. Structure 17, 690–702 (2009).

  26. 26

    Duchaud, E. et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 21, 1307–1313 (2003).

  27. 27

    Maresca, M. et al. Single-stranded heteroduplex intermediates in lambda Red homologous recombination. BMC Mol. Biol. 11, 54 (2010).

  28. 28

    Murphy, K.C. The lambda Gam protein inhibits RecBCD binding to dsDNA ends. J. Mol. Biol. 371, 19–24 (2007).

  29. 29

    Court, R., Cook, N., Saikrishnan, K. & Wigley, D. The crystal structure of lambda-Gam protein suggests a model for RecBCD inhibition. J. Mol. Biol. 371, 25–33 (2007).

  30. 30

    Zhang, Y., Muyrers, J.P., Rientjes, J. & Stewart, A.F. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol. Biol. 4, 1 (2003).

  31. 31

    Court, D.L., Sawitzke, J.A. & Thomason, L.C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

  32. 32

    Mosberg, J.A., Lajoie, M.J. & Church, G.M. Lambda Red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186, 791–799 (2010).

  33. 33

    Poteete, A.R. Involvement of DNA replication in phage lambda Red-mediated homologous recombination. Mol. Microbiol. 68, 66–74 (2008).

  34. 34

    Ellis, H.M., Yu, D.G., DiTizio, T. & Court, D.L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98, 6742–6746 (2001).

  35. 35

    Bowen, D. et al. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280, 2129–2132 (1998).

  36. 36

    Waterfield, N.R. et al. Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc. Natl. Acad. Sci. USA 105, 15967–15972 (2008).

  37. 37

    Homburg, S., Oswald, E., Hacker, J. & Dobrindt, U. Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol. Lett. 275, 255–262 (2007).

  38. 38

    Gaitatzis, N., Hans, A., Müller, R. & Beyer, S. The mtaA gene of the myxothiazol biosynthetic gene cluster from Stigmatella aurantiaca DW4/3–1 encodes a phosphopantetheinyl transferase that activates polyketide synthases and polypeptide synthetases. J. Biochem. 129, 119–124 (2001).

  39. 39

    Amrein, H. et al. Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R. Mol. Plant Microbe Interact. 17, 90–97 (2004).

  40. 40

    Schellenberg, B., Bigler, L. & Dudler, R. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ. Microbiol. 9, 1640–1650 (2007).

  41. 41

    Oka, M. et al. Glidobactin-A, glidobactin-B and glidobactin-C, new antitumor antibiotics. II. Structure elucidation. J. Antibiot. 41, 1338–1350 (1988).

  42. 42

    Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63, 751–813 (1999).

  43. 43

    Iyer, L.M., Koonin, E.V. & Aravind, L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics 3, 8 (2002).

  44. 44

    Erler, A. et al. Conformational adaptability of Redbeta during DNA annealing and implications for its structural relationship with Rad52. J. Mol. Biol. 391, 586–598 (2009).

  45. 45

    Yamamoto, T., Moerschell, R.P., Wakem, L.P., Komarpanicucci, S. & Sherman, F. Strand-specificity in the transformation of yeast with synthetic oligonucleotides. Genetics 131, 811–819 (1992).

  46. 46

    Swingle, B. et al. Oligonucleotide recombination in Gram-negative bacteria. Mol. Microbiol. 75, 138–148 (2010).

  47. 47

    Craig, J.W., Chang, F.Y., Kim, J.H., Obiajulu, S.C. & Brady, S.F. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl. Environ. Microbiol. 76, 1633–1641 (2010).

  48. 48

    Wenzel, S.C. et al. Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering. Chem. Biol. 12, 349–356 (2005).

  49. 49

    Fu, J. et al. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res. 36, e113 (2008).

  50. 50

    Bachmann, B.O. & Ravel, J. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol. 458, 181–217 (2009).

  51. 51

    Ansari, M.Z., Yadav, G., Gokhale, R.S. & Mohanty, D. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32, W405–W413 (2004).

  52. 52

    Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

  53. 53

    Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).

  54. 54

    Del Vecchio, F. et al. Active-site residue, domain and module swaps in modular polyketide synthases. J. Ind. Microbiol. Biotechnol. 30, 489–494 (2003).

  55. 55

    Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D.H. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33, 5799–5808 (2005).

  56. 56

    Larkin, M.A. et al. Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

Download references


Research work in R&D in Gene Bridges (Y.Z.) was partially funded by the Bundesministerium für Bildung und Forschung (MiPro). This work was supported by funding to A.F.S. from the EU 6th and 7th Framework projects, EUCOMM and EUCOMMTOOLS. Research in the laboratory of R.M. was funded by the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung. X.B. is supported by China Scholarship Council. The authors thank J. Herrmann in the laboratory of R.M. for cytotoxic activity assay.

Author information

J.F., A.F.S. and Y.Z. discovered the LLHR activity of full-length RecE. J.F., X.B., S.H., H.W., F.H., P.M.S., L.X. and Y.Z. made the DNA constructs and E. coli strains. X.B., A.P., R.M. and Y.Z. analyzed the secondary metabolites. J.F., X.B.,L.X., R.M., A.F.S. and Y.Z. designed the experiments and wrote the paper.

Correspondence to Rolf Müller or A Francis Stewart or Youming Zhang.

Ethics declarations

Competing interests

R.M., A.F.S. and Y.Z. are shareholders of the company Gene Bridges that holds the exclusive rights to Red and RecET recombineering methodologies.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7, Supplementary Results and Supplementary Figures 1–13 (PDF 4526 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fu, J., Bian, X., Hu, S. et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30, 440–446 (2012). https://doi.org/10.1038/nbt.2183

Download citation

Further reading