Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor

Abstract

Signaling pathways are commonly organized through inducible protein-protein interactions, mediated by adaptor proteins that link activated receptors to cytoplasmic effectors1. However, we have little quantitative data regarding the kinetics with which such networks assemble and dissolve to generate specific cellular responses. To address this deficiency, we designed a mass spectrometry method, affinity purification–selected reaction monitoring (AP-SRM), which we used to comprehensively and quantitatively investigate changes in protein interactions with GRB2, an adaptor protein that participates in a remarkably diverse set of protein complexes involved in multiple aspects of cellular function. Our data reliably define context-specific and time-dependent networks that form around GRB2 after stimulation, and reveal core and growth factor–selective complexes comprising 90 proteins identified as interacting with GRB2 in HEK293T cells. Capturing a key hub protein and dissecting its interactions by SRM should be equally applicable to quantifying signaling dynamics for a range of hubs in protein interaction networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the AP-SRM workflow.
Figure 2: SH2/SH3 domain association of the 90 proteins measured in the GRB2 SRM assay.
Figure 3: Dynamic quantitative analysis of the GRB2 protein complexes upon stimulation of cells with epidermal growth factor (EGF).
Figure 4: The composition of GRB2 complexes is generally dependent on the stimulation type.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Lemmon, M.A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pawson, T. Dynamic control of signaling by modular adaptor proteins. Curr. Opin. Cell Biol. 19, 112–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Lim, W.A. & Pawson, T. Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142, 661–667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu, B.A. et al. The human and mouse complement of SH2 domain proteins-establishing the boundaries of phosphotyrosine signaling. Mol. Cell 22, 851–868 (2006).

    Article  PubMed  Google Scholar 

  5. Mayer, B.J. & Gupta, R. Functions of SH2 and SH3 domains. Curr. Top. Microbiol. Immunol. 228, 1–22 (1998).

    CAS  PubMed  Google Scholar 

  6. Lowenstein, E.J. et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70, 431–442 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Songyang, Z. et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14, 2777–2785 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sparks, A.B. et al. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proc. Natl. Acad. Sci. USA 93, 1540–1544 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCormick, F. Signal transduction. How receptors turn Ras on. Nature 363, 15–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Ponzetto, C. et al. Specific uncoupling of GRB2 from the Met receptor. Differential effects on transformation and motility. J. Biol. Chem. 271, 14119–14123 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Skolnik, E.Y. et al. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signaling. EMBO J. 12, 1929–1936 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barrios-Rodiles, M. et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science 307, 1621–1625 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Breitkreutz, A. et al. A global protein kinase and phosphatase interaction network in yeast. Science 328, 1043–1046 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gingras, A.C., Gstaiger, M., Raught, B. & Aebersold, R. Analysis of protein complexes using mass spectrometry. Nat. Rev. Mol. Cell Biol. 8, 645–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Kaake, R.M., Wang, X. & Huang, L. Profiling of protein interaction networks of protein complexes using affinity purification and quantitative mass spectrometry. Mol. Cell. Proteomics 9, 1650–1665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choudhary, C. & Mann, M. Decoding signaling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11, 427–439 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Hubner, N.C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rinner, O. et al. An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat. Biotechnol. 25, 345–352 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D.A. & White, F.M. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. USA 104, 5860–5865 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Addona, T.A. et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 27, 633–641 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lange, V., Picotti, P., Domon, B. & Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4, 222 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ackermann, B.L., Berna, M.J., Eckstein, J.A., Ott, L.W. & Chaudhary, A.K. Current applications of liquid chromatography/mass spectrometry in pharmaceutical discovery after a decade of innovation. Annu. Rev. Anal. Chem. 1, 357–396 (2008).

    Article  CAS  Google Scholar 

  24. Picotti, P., Bodenmiller, B., Mueller, L.N., Domon, B. & Aebersold, R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795–806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Traweger, A. et al. Protein phosphatase 1 regulates the phosphorylation state of the polarity scaffold Par-3. Proc. Natl. Acad. Sci. USA 105, 10402–10407 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi, Z.Q., Yu, D.H., Park, M., Marshall, M. & Feng, G.S. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol. Cell. Biol. 20, 1526–1536 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shaw, G., Morse, S., Ararat, M. & Graham, F.L. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 16, 869–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Bazenet, C.E., Gelderloos, J.A. & Kazlauskas, A. Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation. Mol. Cell. Biol. 16, 6926–6936 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chook, Y.M., Gish, G.D., Kay, C.M., Pai, E.F. & Pawson, T. The Grb2-mSos1 complex binds phosphopeptides with higher affinity than Grb2. J. Biol. Chem. 271, 30472–30478 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Unwin, R.D., Griffiths, J.R. & Whetton, A.D. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS). Nat. Protoc. 4, 870–877 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. Colwill and A.-C. Gingras for insightful comments on the manuscript, R. Bagshaw, G. Findlay, J. Gish, J. Jin, B. Larsen and O. Rocks for discussions and A. Yu Dai, B. Larsen and B. Liu for technical assistance. This project is supported through Ontario Research Fund grants from the Ontario Ministry of Research and Innovation and grants from Genome Canada through the Ontario Genomics Institute, the Canadian Institutes of Health Research (CIHR, grant MOP-6849), the Terry Fox Research Institute/Ontario Institute for Cancer Research and the Canadian Cancer Society Research Institute. N.B. holds a research fellowship from the CIHR. T.P. holds the Apotex Chair in Molecular Oncology and is a Distinguished Investigator of the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Pawson.

Ethics declarations

Competing interests

G.I., S.A.T. and R.B. are employees of AB Sciex. AB Sciex has provided support for Ontario Research Fund grants (awarded to T.P.).

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5, Supplementary Methods and Supplementary Figsures 1–20 (PDF 2350 kb)

Supplementary Data 1

Statistical analysis at the protein level of all AP-SRM experiments. (XLS 326 kb)

Supplementary Data 2

Statiscal analysis at the peptide level of all AP-SRM experiments. (XLS 606 kb)

Supplementary Data 3

Experimental evidence for phosphorylation sites data presented in Supplementary Table 2. (XLS 227 kb)

Supplementary Data 4

List of all proteins identified in GRB2 and control GFP AP-MS experiments. (XLS 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisson, N., James, D., Ivosev, G. et al. Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor. Nat Biotechnol 29, 653–658 (2011). https://doi.org/10.1038/nbt.1905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing