Towards consensus practices to qualify safety biomarkers for use in early drug development

Article metrics


Application of any new biomarker to support safety-related decisions during regulated phases of drug development requires provision of a substantial data set that critically assesses analytical and biological performance of that biomarker. Such an approach enables stakeholders from industry and regulatory bodies to objectively evaluate whether superior standards of performance have been met and whether specific claims of fit-for-purpose use are supported. It is therefore important during the biomarker evaluation process that stakeholders seek agreement on which critical experiments are needed to test that a biomarker meets specific performance claims, how new biomarker and traditional comparators will be measured and how the resulting data will be merged, analyzed and interpreted.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Urinary Kim-1 levels after cisplatin treatment16.


  1. 1

    Biomarker Definitions Working Group. Biomarker and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

  2. 2

    Wagner, J.A. Strategic approach to fit-for-purpose biomarkers in drug development. Annu. Rev. Pharmacol. Toxicol. 48, 631–651 (2008).

  3. 3

    Wilson, C., Schulz, S. & Waldman, S.A. Biomarker development, commercialization, and regulation: individualization of medicine lost in translation. Clin. Pharmacol. Ther. 81, 153–155 (2007).

  4. 4

    Sistare, F.D. & DeGeorge, J.J. Preclinical predictors of clinical safety: opportunities for improvement. Clin. Pharmacol. Ther. 82, 210–214 (2007).

  5. 5

    Food and Drug Administration. Innovation or Stagnation: Challenge And Opportunity on the Critical Path to New Medical Products. (16 March 2004)

  6. 6

    European Medicines Agency. Evaluation of Medicines for Human Use Innovative Drug Development Approaches Final Report from the EMEA/CHMP-Think-Tank Group on Innovative Drug Development (22 March 2007).

  7. 7

    Mattes, W.B. et al. Research at the interface of industry, academia and regulatory science. Nat. Biotechnol. 28, 432–433 (2010).

  8. 8

    Cummins, B., Auckland, M.L. & Cummins, P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am. Heart J. 113, 1333–1344 (1987).

  9. 9

    Alpert, J.S. et al. Myocardial infarction redefined – a consensus document of the joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of myocardial infarction. J. Am. Coll. Cardiol. 36, 959–969 (2000).

  10. 10

    Altar, C.A. et al. A prototypical process for creating evidentiary standards for biomarkers and diagnostics. Clin. Pharmacol. Ther. 83, 368–371 (2008).

  11. 11

    Wagner, J.A., Williams, S.A. & Webster, C.J. Biomarkers and surrogate end points for fit-for-purpose development and regulatory evaluation of new drugs. Clin. Pharmacol. Ther. 81, 104–107 (2007).

  12. 12

    Bonventre, J.V., Vaidya, V.S., Schmouder, R., Feig, P. & Dieterle, F. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol. 28, 436–440 (2010).

  13. 13

    Inglese, J. et al. Eli Lilly and Company and the NIH Chemical Genomics Center Assay Guidance Manual. (Eli Lilly and Company and the NIH Chemical Genomics Center, 2008).

  14. 14

    Lee, J.W. et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm. Res. 23, 312–328 (2006).

  15. 15

    Ichimura, T., Hung, C.C., Yang, S.A., Stevens, J.L. & Bonventre, J.V. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury, American Journal of Physiology – Ren. Physiol. 286, F552–F563 (2004).

  16. 16

    Vaidya, V. et al. Kidney injury molecule-1 outperforms traditional biomarker of kidney injury in mult-site preclinical biomarker qualification studies. Nat. Biotechnol. 28, 478–485 (2010).

  17. 17

    Yu, Y. et al. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat. Biotechnol. 28, 470–477 (2010).

  18. 18

    Dieterle, F. et al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat. Biotechnol. 28, 463–469 (2010).

  19. 19

    Crissman, J.W. et al. Best practices guideline: toxicologic histopathology. Toxicol. Pathol. 32, 126–131 (2004).

  20. 20

    Ransohoff, D.F. Bias as a threat to the validity of cancer molecular-marker research. Nat. Rev. Cancer 5, 142–149 (2005).

  21. 21

    Dieterle, F. et al. Renal biomarker qualificaiton submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol. 28, 455–462 (2010).

  22. 22

    DeLong, E.R., DeLong, D.M. & Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988).

  23. 23

    Harrell, F.E. Jr. Regression Modeling Strategies (Springer, New York; 2001).

  24. 24

    Hill, AB. The environment and disease: association or causation? Proc. R. Soc. Med. 58, 295–300 (1965).

Download references

Author information

Correspondence to Frank D Sistare.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 116 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sistare, F., Dieterle, F., Troth, S. et al. Towards consensus practices to qualify safety biomarkers for use in early drug development. Nat Biotechnol 28, 446–454 (2010) doi:10.1038/nbt.1634

Download citation

Further reading