Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Possible interaction between baryons and dark-matter particles revealed by the first stars


The cosmic radio-frequency spectrum is expected to show a strong absorption signal corresponding to the 21-centimetre-wavelength transition of atomic hydrogen around redshift 20, which arises from Lyman-α radiation from some of the earliest stars1,2,3,4. By observing this 21-centimetre signal—either its sky-averaged spectrum5 or maps of its fluctuations, obtained using radio interferometers6,7—we can obtain information about cosmic dawn, the era when the first astrophysical sources of light were formed. The recent detection of the global 21-centimetre spectrum5 reveals a stronger absorption than the maximum predicted by existing models, at a confidence level of 3.8 standard deviations. Here we report that this absorption can be explained by the combination of radiation from the first stars and excess cooling of the cosmic gas induced by its interaction with dark matter8,9,10. Our analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles. Our analysis also confirms that dark matter is highly non-relativistic and at least moderately cold, and primordial velocities predicted by models of warm dark matter are potentially detectable. These results indicate that 21-centimetre cosmology can be used as a dark-matter probe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Simulated 21-cm intensity using a model with baryon–dark matter scattering.
Figure 2: Global 21-cm signal in models with baryon–dark matter scattering.
Figure 3: Constraints on dark-matter properties using cosmic dawn observations.


  1. 1

    Madau, P., Meiksin, A. & Rees, M. J. 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429–444 (1997)

    ADS  Article  Google Scholar 

  2. 2

    Tozzi, P., Madau, P., Meiksin, A. & Rees, M. J. Radio signatures of H i at high redshift: mapping the end of the “dark ages”. Astrophys. J. 528, 597–606 (2000)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Furlanetto, S. R., Oh, S. P. & Briggs, F. H. Cosmology at low frequencies: the 21 cm transition and the high-redshift Universe. Phys. Rep. 433, 181–301 (2006)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Barkana, R. The rise of the first stars: supersonic streaming, radiative feedback, and 21-cm cosmology. Phys. Rep. 645, 1–59 (2016)

    CAS  ADS  MathSciNet  Article  Google Scholar 

  5. 5

    Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J. & Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, (2018)

  6. 6

    DeBoer, D. R. et al. Hydrogen Epoch of Reionization Array (HERA). Publ. Astron. Soc. Pacif. 129, 045001 (2017)

    ADS  Article  Google Scholar 

  7. 7

    Koopmans, L. et al. The cosmic dawn and epoch of reionisation with SKA. In Proc. Advancing Astrophysics with the Square Kilometre Array (Proceedings of Science, 2015)

  8. 8

    Dvorkin, C., Blum, K. & Kamionkowski, M. Constraining dark matter–baryon scattering with linear cosmology. Phys. Rev. D 89, 023519 (2014)

    ADS  Article  Google Scholar 

  9. 9

    Tashiro, H., Kadota, K. & Silk, J. Effects of dark matter-baryon scattering on redshifted 21 cm signals. Phys. Rev. D 90, 083522 (2014)

    ADS  Article  Google Scholar 

  10. 10

    Muñoz, J. B., Kovetz, E. D. & Ali-Haïmoud, Y. Heating of baryons due to scattering with dark matter during the dark ages. Phys. Rev. D 92, 083528 (2015)

    ADS  Article  Google Scholar 

  11. 11

    Purcell, E. M. & Field, G. B. Influence of collisions upon population of hyperfine states in hydrogen. Astrophys. J. 124, 542–549 (1956)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Hogan, C. J. & Rees, M. J. Spectral appearance of non-uniform gas at high z. Mon. Not. R. Astron. Soc. 188, 791–798 (1979)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Scott, D. & Rees, M. J. The 21-cm line at high redshift: a diagnostic for the origin of large scale structure. Mon. Not. R. Astron. Soc. 247, 510–516 (1990)

    CAS  ADS  Google Scholar 

  14. 14

    Furlanetto, S. R. The global 21-centimeter background from high redshifts. Mon. Not. R. Astron. Soc. 371, 867–878 (2006)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Fialkov, A., Barkana, R. & Visbal, E. The observable signature of late heating of the Universe during cosmic reionization. Nature 506, 197–199 (2014)

    CAS  ADS  Article  Google Scholar 

  16. 16

    Wouthuysen, S. A. On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. Astron. J. 57, 31–32 (1952)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Field, G. B. Excitation of the hydrogen 21-cm line. Proc. IRE 46, 240–250 (1958)

    ADS  Article  Google Scholar 

  18. 18

    Chuzhoy, L., & Kolb, E. W. Reopening the window on charged dark matter. J. Cosmol. Astropart. Phys. 7, 14 (2009)

    ADS  Article  Google Scholar 

  19. 19

    McDermott, S. D., Yu, H.-B. & Zurek, K. M. Turning off the lights: how dark is dark matter? Phys. Rev. D 83, 063509 (2011)

    ADS  Article  Google Scholar 

  20. 20

    Sunyaev, R. A. & Zeldovich, Y. B. Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3–19 (1970)

    ADS  Google Scholar 

  21. 21

    Tseliakhovich, D. & Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010)

    ADS  Article  Google Scholar 

  22. 22

    Dalal, N., Pen, U.-L. & Seljak, U. Large-scale BAO signatures of the smallest galaxies. J. Cosmol. Astropart. Phys. 11, 7 (2010)

    ADS  Article  Google Scholar 

  23. 23

    Visbal, E., Barkana, R., Fialkov, A., Tseliakhovich, D. & Hirata, C. M. The signature of the first stars in atomic hydrogen at redshift 20. Nature 487, 70–73 (2012)

    CAS  ADS  Article  Google Scholar 

  24. 24

    XENON Collaboration. First dark matter search results from the XENON1T experiment. Phys. Rev. Lett. 119, 181301 (2017)

  25. 25

    PandaX-II Collaboration. Dark matter results from 54-ton-day exposure of PandaX-II experiment. Phys. Rev. Lett. 119, 181302 (2017)

  26. 26

    Hu, W., Barkana, R. & Gruzinov, A. Fuzzy cold dark matter: the wave properties of ultralight particles. Phys. Rev. Lett. 85, 1158–1161 (2000)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Iršicˇ, V. et al. New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data. Phys. Rev. D 96, 023522 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  28. 28

    Singh, S. et al. First results on the epoch of reionization from first light with SARAS 2. Astrophys. J. 845, L12 (2017)

    ADS  Article  Google Scholar 

  29. 29

    Bernardi, G., McQuinn, M. & Greenhill, L. J. Foreground model and antenna calibration errors in the measurement of the sky-averaged λ21 cm signal at z ~ 20. Astrophys. J. 799, 90 (2015)

    ADS  Article  Google Scholar 

  30. 30

    Alam, S. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 470, 2617–2652 (2017)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Cohen, A., Fialkov, A., Barkana, R. & Lotem, M. Charting the parameter space of the global 21-cm signal. Mon. Not. R. Astron. Soc. 472, 1915–1931 (2017)

    CAS  ADS  Article  Google Scholar 

  32. 32

    Barkana, R. & Loeb, A. Detecting the earliest galaxies through two new sources of 21 centimeter fluctuations. Astrophys. J. 626, 1–11 (2005)

    CAS  ADS  Article  Google Scholar 

  33. 33

    Pritchard, J. R. & Furlanetto, S. 21-cm fluctuations from inhomogeneous X-ray heating before reionization. Mon. Not. R. Astron. Soc. 376, 1680–1694 (2007)

    CAS  ADS  Article  Google Scholar 

  34. 34

    Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)

  35. 35

    Ali-Haïmoud, Y. & Hirata, C. M. HyRec: a fast and highly accurate primordial hydrogen and helium recombination code. Phys. Rev. D 83, 043513 (2011)

    ADS  Article  Google Scholar 

  36. 36

    McQuinn, M. The evolution of the intergalactic medium. Annu. Rev. Astron. Astrophys. 54, 313–362 (2016)

    CAS  ADS  Article  Google Scholar 

  37. 37

    Miralda-Escudé, J., Haehnelt, M. & Rees, M. J. Reionization of the inhomogeneous Universe. Astrophys. J. 530, 1–16 (2000)

    ADS  Article  Google Scholar 

  38. 38

    Ross, H. E., Dixon, K. L., Iliev, I. T. & Mellema, G. Simulating the impact of X-ray heating during the cosmic dawn. Mon. Not. R. Astron. Soc. 468, 3785–3797 (2017)

    CAS  ADS  Article  Google Scholar 

  39. 39

    O’Leary, R. M. & McQuinn, M. The formation of the first cosmic structures and the physics of the z ~ 20 Universe. Astrophys. J. 760, 4 (2012)

    ADS  Article  Google Scholar 

  40. 40

    Semelin, B., Eames, E., Bolgar, F. & Caillat, M. 21SSD: a public data base of simulated 21-cm signals from the epoch of reionization. Mon. Not. R. Astron. Soc. 472, 4508–4520 (2017)

    CAS  ADS  Article  Google Scholar 

  41. 41

    Gnedin, N. Y. & Hui, L. Probing the Universe with the Lyα forest – I. Hydrodynamics of the low-density intergalactic medium. Mon. Not. R. Astron. Soc. 296, 44–55 (1998)

    ADS  Article  Google Scholar 

  42. 42

    Naoz, S. & Barkana, R. The formation and gas content of high-redshift galaxies and minihaloes. Mon. Not. R. Astron. Soc. 377, 667–676 (2007)

    ADS  Article  Google Scholar 

  43. 43

    Monsalve, R. A., Rogers, A. E. E., Bowman, J. D. & Mozdzen, T. J. Results from EDGES High-band. I. Constraints on phenomenological models for the global 21 cm signal. Astrophys. J. 847, 64 (2017)

    ADS  Article  Google Scholar 

  44. 44

    Ali, Z. S. et al. PAPER-64 constraints on reionization: the 21 cm power spectrum at z = 8.4. Astrophys. J. 809, 61 (2015)

    ADS  Article  Google Scholar 

  45. 45

    Patil, A. H. et al. Upper limits on the 21 cm epoch of reionization power spectrum from one night with LOFAR. Astrophys. J. 838, 65 (2017)

    ADS  Article  Google Scholar 

  46. 46

    Beardsley, A. P. et al. First season MWA EoR power spectrum results at redshift 7. Astrophys. J. 833, 102 (2016)

    ADS  Article  Google Scholar 

  47. 47

    Paciga, G. et al. A simulation-calibrated limit on the H i power spectrum from the GMRT Epoch of Reionization experiment. Mon. Not. R. Astron. Soc. 433, 639–647 (2013)

    CAS  ADS  Article  Google Scholar 

  48. 48

    Chuzhoy, L. & Shapiro, P. R. Ultraviolet pumping of hyperfine transitions in the light elements, with application to 21 cm hydrogen and 92 cm deuterium lines from the early universe. Astrophys. J. 651, 1–7 (2006)

    CAS  ADS  Article  Google Scholar 

  49. 49

    Chen, X. & Miralda-Escudé, J. The spin-kinetic temperature coupling and the heating rate due to Lyα scattering before reionization: predictions for 21 centimeter emission and absorption. Astrophys. J. 602, 1–11 (2004)

    CAS  ADS  Article  Google Scholar 

  50. 50

    Hirata, C. M. Wouthuysen–Field coupling strength and application to high-redshift 21-cm radiation. Mon. Not. R. Astron. Soc. 367, 259–274 (2006)

    CAS  ADS  Article  Google Scholar 

  51. 51

    Furlanetto, S. R. & Pritchard, J. R. The scattering of Lyman-series photons in the intergalactic medium. Mon. Not. R. Astron. Soc. 372, 1093–1103 (2006)

    ADS  Article  Google Scholar 

  52. 52

    Chuzhoy, L. & Shapiro, P. R. Heating and cooling of the early intergalactic medium by resonance photons. Astrophys. J. 655, 843–846 (2007)

    CAS  ADS  Article  Google Scholar 

  53. 53

    Hui, L., Ostriker, J. P., Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 95, 043541 (2017)

    ADS  Article  Google Scholar 

  54. 54

    Burns, J. O. et al. Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE). Adv. Space Res. 49, 433–450 (2012)

    CAS  ADS  Article  Google Scholar 

  55. 55

    Ali-Haïmoud, Y., Chluba, J. & Kamionkowski, M. Constraints on dark matter interactions with standard model particles from cosmic microwave background spectral distortions. Phys. Rev. Lett. 115, 071304 (2015)

    ADS  Article  Google Scholar 

  56. 56

    Essig, R., Volansky, T. & Yu, T.-T. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon. Phys. Rev. D 96, 043017 (2017)

    ADS  Article  Google Scholar 

  57. 57

    Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000)

    CAS  ADS  Article  Google Scholar 

  58. 58

    Davidson, S., Hannestad, S. & Raffelt, G. Updated bounds on milli-charged particles. J. High Energy Phys. 5, 3 (2000)

    ADS  Article  Google Scholar 

  59. 59

    Dubovsky, S. L., Gorbunov, D. S. & Rubtsov, G. I. Narrowing the window for millicharged particles by CMB anisotropy. J. Exp. Theor. Phys. 79, 1–5 (2004)

    CAS  Article  Google Scholar 

  60. 60

    Read, J. I. The local dark matter density. J. Phys. G 41, 063101 (2014)

    ADS  Article  Google Scholar 

  61. 61

    Kadota, K ., Sekiguchi, T. & Tashiro, H. A new constraint on millicharged dark matter from galaxy clusters. Preprint at (2016)

  62. 62

    Zaharijas, G. & Farrar, G. R. Window in the dark matter exclusion limits. Phys. Rev. D 72, 083502 (2005)

    ADS  Article  Google Scholar 

  63. 63

    Rich, J., Rocchia, R. & Spiro, M. A search for strongly interacting dark matter. Phys. Lett. B 194, 173–176 (1987)

    CAS  ADS  Article  Google Scholar 

  64. 64

    Erickcek, A. L., Steinhardt, P. J., McCammon, D. & McGuire, P. C. Constraints on the interactions between dark matter and baryons from the x-ray quantum calorimetry experiment. Phys. Rev. D 76, 042007 (2007)

    ADS  Article  Google Scholar 

  65. 65

    Budnik, R ., Chesnovsky, O ., Slone, O. & Volansky, T. Direct detection of light dark matter and solar neutrinos via color center production in crystals. Preprint at (2017)

  66. 66

    Battaglieri, M . et al. US cosmic visions: new ideas in dark matter 2017: community report. Preprint at (2017)

  67. 67

    Starkman, G. D., Gould, A., Esmailzadeh, R. & Dimopoulos, S. Opening the window on strongly interacting dark matter. Phys. Rev. D 41, 3594–3603 (1990)

    CAS  ADS  Article  Google Scholar 

  68. 68

    Mack, G. D., Beacom, J. F. & Bertone, G. Towards closing the window on strongly interacting dark matter: far-reaching constraints from Earth’s heat flow. Phys. Rev. D 76, 043523 (2007)

    ADS  Article  Google Scholar 

  69. 69

    Alekhin, S. et al. A facility to search for hidden particles at the CERN SPS: the SHiP physics case. Rep. Prog. Phys. 79, 124201 (2016)

    ADS  Article  Google Scholar 

  70. 70

    Cyburt, R. H., Fields, B. D., Pavlidou, V. & Wandelt, B. Constraining strong baryon-dark-matter interactions with primordial nucleosynthesis and cosmic rays. Phys. Rev. D 65, 123503 (2002)

    ADS  Article  Google Scholar 

  71. 71

    Muñoz, J. B. & Loeb, A. Constraints on dark-matter-baryon scattering from the temperature evolution of the intergalactic medium. J. Cosmol. Astropart. Phys. 2017, 043 (2017)

    Article  Google Scholar 

  72. 72

    Mesinger, A., Furlanetto, S. & Cen, R. 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal. Mon. Not. R. Astron. Soc. 411, 955–972 (2011)

    ADS  Article  Google Scholar 

Download references


I am grateful to J. Bowman for alerting me to possible indications of very deep absorption in the EDGES results, which inspired this work. This project was made possible through the support of a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the author and do not necessarily reflect the views of the John Templeton Foundation.

Author information



Corresponding author

Correspondence to Rennan Barkana.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 555, 71–74 (2018).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing