Letter

Measurement of the multi-TeV neutrino interaction cross-section with IceCube using Earth absorption

Received:
Accepted:
Published online:

Abstract

Neutrinos interact only very weakly, so they are extremely penetrating. The theoretical neutrino–nucleon interaction cross-section, however, increases with increasing neutrino energy, and neutrinos with energies above 40 teraelectronvolts (TeV) are expected to be absorbed as they pass through the Earth. Experimentally, the cross-section has been determined only at the relatively low energies (below 0.4 TeV) that are available at neutrino beams from accelerators1,2. Here we report a measurement of neutrino absorption by the Earth using a sample of 10,784 energetic upward-going neutrino-induced muons. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the neutrino–nucleon interaction cross-section for neutrino energies 6.3–980 TeV, more than an order of magnitude higher than previous measurements. The measured cross-section is about 1.3 times the prediction of the standard model3, consistent with the expectations for charged- and neutral-current interactions. We do not observe a large increase in the cross-section with neutrino energy, in contrast with the predictions of some theoretical models, including those invoking more compact spatial dimensions4 or the production of leptoquarks5. This cross-section measurement can be used to set limits on the existence of some hypothesized beyond-standard-model particles, including leptoquarks.

  • Subscribe to Nature for full access:

    $199

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. Review of particle physics. Chin. Phys. C 38, 090001 (2014)

  2. 2.

    & From eV to EeV: neutrino cross sections across energy scales. Rev. Mod. Phys. 84, 1307–1341 (2012)

  3. 3.

    , & The high energy neutrino cross-section in the Standard Model and its uncertainty. J. High Energy Phys. 2011, 42 (2011)

  4. 4.

    , , , & Detecting microscopic black holes with neutrino telescopes. Phys. Rev. D 65, 124015 (2002)

  5. 5.

    & Leptoquarks signals in KM3 neutrino telescopes. J. High Energy Phys. 2009, 111 (2009)

  6. 6.

    Spaceship Neutrino (Cambridge Univ. Press, 1992)

  7. 7.

    , & Calculation of high energy neutrino–nucleon cross sections and uncertainties using the Martin–Stirling–Thorne–Watt parton distribution functions and implications for future experiments. Phys. Rev. D 83, 113009 (2011)

  8. 8.

    IceCube Collaboration. A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube. Astrophys. J. 809, 98 (2015)

  9. 9.

    Earth versus Neutrinos: Measuring the Total Muon-Neutrino-to-Nucleon Cross Section at Ultra-high Energies through Differential Earth Absorption of Muon Neutrinos from Cosmic Rays using the IceCube Detector. PhD thesis, Univ. California, Berkeley (2016)

  10. 10.

    & Passage of neutrinos through the Earth. Bull. Acad. Sci. USSR Phys. Ser. 38, 151–154 (1974); translated from Izv. Akad. Nauk SSSR, Ser. fiz. 38, 1060–1063 (1974)

  11. 11.

    Neutrino tomography: tevatron mapping versus the neutrino sky. Nature 309, 38–42 (1984)

  12. 12.

    & Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

  13. 13.

    On the density distribution within the Earth. Geophys. J. Int. 132, 374–382 (1998)

  14. 14.

    & On the resolution of density within the Earth. Phys. Earth Planet. Inter. 140, 159–167 (2003)

  15. 15.

    , , & Bayesian inversion of free oscillations for Earth’s radial (an)elastic structure. Phys. Earth Planet. Inter. 237, 1–17 (2014)

  16. 16.

    Dumand Collaboration. Mapping the Earth’s interior with astrophysical neutrinos. In 24th International Cosmic Ray Conference Vol. 1 (eds & ) 804–807 (IUPAP, 1995)

  17. 17.

    , , & Radiography of Earth’s core and mantle with atmospheric neutrinos. Phys. Rev. Lett. 100, 061802 (2008)

  18. 18.

    IceCube Collaboration. The IceCube neutrino observatory: instrumentation and online systems. J. Instrum. 12, P03012 (2017)

  19. 19.

    & IceCube: an instrument for neutrino astronomy. Rev. Sci. Instrum. 81, 081101 (2010)

  20. 20.

    IceCube Collaboration. The IceCube data acquisition system: signal capture, digitization, and timestamping. Nucl. Instrum. Meth. A 601, 294–316 (2009)

  21. 21.

    IceCube Collaboration. Evidence for astrophysical muon neutrinos from the northern sky with IceCube. Phys. Rev. Lett. 115, 081102 (2015)

  22. 22.

    Evidence for Astrophysical Muon Neutrinos from the Northern Sky. PhD thesis, Univ. Wisconsin (2015)

  23. 23.

    IceCube Collaboration. An improved method for measuring muon energy using the truncated mean of dE/dx. Nucl. Instrum. Meth. A 703, 190–198 (2013)

  24. 24.

    MINERvA Collaboration. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA. Phys. Rev. D 93, 071101 (2016)

  25. 25.

    WA25 and WA59 Collaborations. An investigation of the EMC effect using anti-neutrinos interactions in deuterium and neon. Phys. Lett. 141, 133–139 (1984)

  26. 26.

    , , & EPPS16: nuclear parton distributions with LHC data. Eur. Phys. J. C 77, 163 (2017)

  27. 27.

    , , , & Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data. Phys. Rev. D 75, 043006 (2007)

  28. 28.

    , & High energy neutrinos from charm in astrophysical sources. Phys. Rev. D 79, 053006 (2009)

  29. 29.

    IceCube Collaboration. Observation and characterization of a cosmic muon neutrino flux from the northern hemisphere using six years of IceCube data. Astrophys. J. 833, 3 (2016)

  30. 30.

    , , , & Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC. J. High Energy Phys. 1506, 110 (2015)

  31. 31.

    , & Lepton fluxes from atmospheric charm revisited. J. High Energy Phys. 1510, 115 (2015)

  32. 32.

    , , , & The prompt atmospheric neutrino flux in the light of LHCb. J. High Energy Phys. 1602, 130 (2016)

  33. 33.

    IceCube-Gen2 Collaboration. IceCube-Gen2: a vision for the future of neutrino astronomy in Antarctica. Preprint at (2014)

  34. 34.

    KM3Net Collaboration. Letter of intent for KM3NeT 2.0. J. Phys. G 43, 084001 (2016)

  35. 35.

    ARIANNA Collaboration. A first search for cosmogenic neutrinos with the ARIANNA hexagonal radio array. Astropart. Phys. 70, 12 (2015)

  36. 36.

    ARA Collaboration. Performance of two Askaryan Radio Array stations and first results in the search for ultrahigh energy neutrinos. Phys. Rev. D 93, 082003 (2016)

  37. 37.

    & Neutrino absorption in the Earth, neutrino cross-sections, and new physics. Preprint at (2013)

Download references

Acknowledgements

We acknowledge support from the following agencies: United States Air Force Academy, US National Science Foundation, Office of Polar Programs; US National Science Foundation, Physics Division; University of Wisconsin Alumni Research Foundation; the Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin, Madison; the Open Science Grid (OSG) grid infrastructure; US Department of Energy; National Energy Research Scientific Computing Center; the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Initiative and Networking Fund of the Helmholtz Association, Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (BELSPO); Marsden Fund; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF); National Research Foundation of Korea (NRF); Villum Fonden, Danish National Research Foundation (DNRF).

Author information

Affiliations

  1. Department of Physics, University of Adelaide, Adelaide 5005, Australia

    • M. G. Aartsen
    • , G. C. Hill
    • , A. Kyriacou
    • , S. Robertson
    • , A. Wallace
    •  & B. J. Whelan
  2. DESY, D-17738 Zeuthen, Germany

    • M. Ackermann
    • , E. Bernardini
    • , S. Blot
    • , F. Bradascio
    • , H.-P. Bretz
    • , J. Brostean-Kaiser
    • , A. Franckowiak
    • , E. Jacobi
    • , T. Karg
    • , T. Kintscher
    • , S. Kunwar
    • , R. Nahnhauer
    • , K. Satalecka
    • , C. Spiering
    • , J. Stachurska
    • , A. Stasik
    • , N. L. Strotjohann
    • , A. Terliuk
    • , M. Usner
    • , J. van Santen
    •  & M. Kowalski
  3. Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand

    • J. Adams
    •  & H. Bagherpour
  4. Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium

    • J. A. Aguilar
    • , I. Ansseau
    • , D. Heereman
    • , K. Meagher
    • , T. Meures
    • , A. O’Murchadha
    • , E. Pinat
    •  & C. Raab
  5. Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

    • M. Ahlers
    • , D. J. Koskinen
    • , M. J. Larson
    • , M. Medici
    • , M. Rameez
    •  & S. Sarkar
  6. Oskar Klein Centre, Stockholm University, SE-10691 Stockholm, Sweden

    • M. Ahrens
    • , C. Bohm
    • , J. P. Dumm
    • , C. Finley
    • , S. Flis
    • , K. Hultqvist
    • , C. Walck
    •  & M. Zoll
  7. Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden

    • M. Ahrens
    • , C. Bohm
    • , J. P. Dumm
    • , C. Finley
    • , S. Flis
    • , K. Hultqvist
    • , C. Walck
    •  & M. Zoll
  8. Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland

    • I. Al Samarai
    • , S. Bron
    • , T. Carver
    • , A. Christov
    •  & T. Montaruli
  9. Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany

    • D. Altmann
    • , G. Anton
    • , T. Glüsenkamp
    • , U. Katz
    • , T. Kittler
    •  & M. Tselengidou
  10. Department of Physics, Marquette University, Milwaukee, Wisconsin 53201, USA

    • K. Andeen
    •  & M. Plum
  11. Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

    • T. Anderson
    • , J. J. DeLaunay
    • , M. Dunkman
    • , P. Eller
    • , F. Huang
    • , A. Keivani
    • , J. L. Lanfranchi
    • , D. V. Pankova
    • , G. Tešić
    • , C. F. Turley
    •  & M. J. Weiss
  12. Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • C. Argüelles
    • , S. Axani
    • , G. H. Collin
    • , J. M. Conrad
    •  & M. Moulai
  13. III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany

    • J. Auffenberg
    • , M. Brenzke
    • , T. Glauch
    • , C. Haack
    • , P. Kalaczynski
    • , J. P. Koschinsky
    • , M. Leuermann
    • , L. Rädel
    • , R. Reimann
    • , M. Rongen
    • , T. Sälzer
    • , S. Schoenen
    • , L. Schumacher
    • , J. Stettner
    • , M. Vehring
    • , E. Vogel
    • , M. Wallraff
    • , A. Waza
    •  & C. H. Wiebusch
  14. Physics Department, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA

    • X. Bai
  15. Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

    • J. P. Barron
    • , W. Giang
    • , D. Grant
    • , C. Kopper
    • , R. W. Moore
    • , S. C. Nowicki
    • , S. E. Sanchez Herrera
    • , S. Sarkar
    • , F. D. Wandler
    • , C. Weaver
    • , T. R. Wood
    • , E. Woolsey
    •  & J. P. Yanez
  16. Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

    • S. W. Barwick
    •  & G. Yodh
  17. Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany

    • V. Baum
    • , S. Böser
    • , V. di Lorenzo
    • , B. Eberhardt
    • , T. Ehrhardt
    • , L. Köpke
    • , G. Krückl
    • , G. Momenté
    • , P. Peiffer
    • , J. Sandroos
    • , A. Steuer
    •  & K. Wiebe
  18. Department of Physics, University of California, Berkeley, California 94720, USA

    • R. Bay
    • , K. Filimonov
    • , P. B. Price
    • , K. Woschnagg
    • , G. Binder
    • , S. R. Klein
    • , S. Miarecki
    • , T. Palczewski
    •  & J. Tatar
  19. Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210, USA

    • J. J. Beatty
    •  & M. Sutherland
  20. Department of Astronomy, Ohio State University, Columbus, Ohio 43210, USA

    • J. J. Beatty
  21. Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

    • J. Becker Tjus
    • , F. Bos
    • , B. Eichmann
    • , M. Kroll
    • , S. Schöneberg
    •  & F. Tenholt
  22. Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany

    • K.-H. Becker
    • , D. Bindig
    • , K. Helbing
    • , S. Hickford
    • , R. Hoffmann
    • , F. Lauber
    • , U. Naumann
    • , A. Obertacke Pollmann
    •  & D. Soldin
  23. Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

    • S. BenZvi
    •  & R. Cross
  24. Department of Physics, University of Maryland, College Park, Maryland 20742, USA

    • D. Berley
    • , E. Blaufuss
    • , E. Cheung
    • , J. Felde
    • , E. Friedman
    • , R. Hellauer
    • , K. D. Hoffman
    • , R. Maunu
    • , A. Olivas
    • , T. Schmidt
    • , M. Song
    •  & G. W. Sullivan
  25. Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA

    • D. Z. Besson
  26. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • G. Binder
    • , S. R. Klein
    • , S. Miarecki
    • , T. Palczewski
    • , J. Tatar
    • , L. Gerhardt
    • , A. Goldschmidt
    • , D. R. Nygren
    • , G. T. Przybylski
    • , T. Stezelberger
    •  & R. G. Stokstad
  27. Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany

    • M. Börner
    • , T. Fuchs
    • , M. Hünnefeld
    • , M. Meier
    • , T. Menne
    • , D. Pieloth
    • , W. Rhode
    • , T. Ruhe
    • , A. Sandrock
    • , P. Schlunder
    • , J. Soedingrekso
    •  & J. Werthebach
  28. Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea

    • D. Bose
    • , H. Dujmovic
    • , S. In
    • , M. Jeong
    • , W. Kang
    • , J. Kim
    •  & C. Rott
  29. Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden

    • O. Botner
    • , A. Burgman
    • , A. Hallgren
    • , C. Pérez de los Heros
    •  & E. Unger
  30. Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA

    • J. Bourbeau
    • , J. Braun
    • , J. Casey
    • , D. Chirkin
    • , M. Day
    • , P. Desiati
    • , J. C. Díaz-Vélez
    • , S. Fahey
    • , K. Ghorbani
    • , Z. Griffith
    • , F. Halzen
    • , K. Hanson
    • , B. Hokanson-Fasig
    • , K. Hoshina
    • , K. Jero
    • , A. Karle
    • , M. Kauer
    • , J. L. Kelley
    • , A. Kheirandish
    • , Q. R. Liu
    • , W. Luszczak
    • , S. Mancina
    • , F. McNally
    • , G. Merino
    • , A. Schneider
    • , M. N. Tobin
    • , D. Tosi
    • , B. Ty
    • , J. Vandenbroucke
    • , N. Wandkowsky
    • , C. Wendt
    • , S. Westerhoff
    • , L. Wille
    • , M. Wolf
    • , J. Wood
    • , D. L. Xu
    •  & T. Yuan
  31. Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan

    • K. Hoshina
  32. Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium

    • L. Brayeur
    • , M. Casier
    • , C. De Clercq
    • , K. D. de Vries
    • , G. de Wasseige
    • , J. Kunnen
    • , J. Lünemann
    • , G. Maggi
    • , S. Toscano
    •  & N. van Eijndhoven
  33. SNOLAB, 1039 Regional Road 24, Creighton Mine 9, Lively, Ontario P3Y 1N2, Canada

    • K. Clark
  34. Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany

    • L. Classen
    •  & A. Kappes
  35. Physik-department, Technische Universität München, D-85748 Garching, Germany

    • S. Coenders
    • , M. Huber
    • , K. Krings
    • , I. C. Rea
    • , E. Resconi
    •  & A. Turcati
  36. Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

    • D. F. Cowen
  37. Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

    • D. F. Cowen
  38. Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

    • J. P. A. M. de André
    • , T. DeYoung
    • , J. Hignight
    • , D. Lennarz
    • , K. B. M. Mahn
    • , J. Micallef
    • , G. Neer
    •  & D. Rysewyk
  39. Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

    • H. Dembinski
    • , P. A. Evenson
    • , T. K. Gaisser
    • , J. G. Gonzalez
    • , R. Koirala
    • , H. Pandya
    • , D. Seckel
    • , T. Stanev
    •  & S. Tilav
  40. Department of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium

    • S. De Ridder
  41. Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany

    • M. Labare
    • , D. Ryckbosch
    • , W. Van Driessche
    • , S. Vanheule
    • , M. Vraeghe
    • , M. de With
    • , D. Hebecker
    • , H. Kolanoski
    •  & M. Kowalski
  42. Department of Physics, Southern University, Baton Rouge, Louisiana 70813, USA

    • A. R. Fazely
    • , S. Ter-Antonyan
    •  & X. W. Xu
  43. Department of Astronomy, University of Wisconsin, Madison, Wisconsin 53706, USA

    • J. Gallagher
  44. Department of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan

    • A. Ishihara
    • , M. Kim
    • , T. Kuwabara
    • , L. Lu
    • , K. Mase
    • , M. Relich
    • , A. Stößl
    •  & S. Yoshida
  45. Center for Theoretical Studies in Physical Systems, Clark-Atlanta University, Atlanta, Georgia 30314, USA

    • G. S. Japaridze
  46. Department of Physics, University of Texas at Arlington, 502 Yates Street, Science Hall Room 108, Box 19059, Arlington, Texas 76019, USA

    • B. J. P. Jones
  47. Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

    • J. Kiryluk
    • , M. Lesiak-Bzdak
    • , H. Niederhausen
    •  & Y. Xu
  48. Université de Mons, 7000 Mons, Belgium

    • G. Kohnen
  49. Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA

    • S. Kopper
    • , P. Nakarmi
    • , J. A. Pepper
    • , P. A. Toale
    •  & D. R. Williams
  50. Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA

    • N. Kurahashi
    • , B. Relethford
    • , M. Richman
    •  & L. Wills
  51. Department of Physics, University of Wisconsin, River Falls, Wisconsin 54022, USA

    • J. Madsen
    • , S. Seunarine
    •  & G. M. Spiczak
  52. Department of Physics, Yale University, New Haven, Connecticut 06520, USA

    • R. Maruyama
  53. Department of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, Alaska 99508, USA

    • K. Rawlins
  54. Department of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK

    • S. Sarkar
  55. School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

    • I. Taboada
    •  & C. F. Tung

Consortia

  1. The IceCube Collaboration

Authors

    Contributions

    The IceCube neutrino observatory was designed and constructed by the IceCube Collaboration and the IceCube Project, which continues to operate it. Data processing and calibration, Monte Carlo simulations of the detector and of theoretical models, and data analyses were performed by a large number of IceCube Collaboration members, who also discussed and approved the scientific results. The analysis presented here was performed by S.Mi. with input from G.B. The paper was written by S.Mi., G.B. and S.R.K. and reviewed by the collaboration. All authors approved the final version of the manuscript.

    Competing interests

    The author declare no competing financial interests.

    Corresponding author

    Correspondence to S. R. Klein.

    Reviewer Information Nature thanks A. De Gouvea and the other anonymous reviewer(s) for their contribution to the peer review of this work.

    Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Comments

    By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.