Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insights from LHAASO and IceCube into the origin of the Galactic diffuse teraelectronvolt–petaelectronvolt emission

Abstract

High-energy diffuse gamma-ray and neutrino emission are expected from the Galactic plane, generated by hadronuclear interactions between cosmic rays and the interstellar medium. Therefore, measurements of this diffuse emission will provide important clues to the origin and nature of Galactic cosmic rays. Comparing the latest observations of the Large High-Altitude Air Shower Observatory and IceCube on diffuse Galactic gamma-ray and neutrino emission, respectively, we suggest that the diffuse gamma-ray emission at multi-teraelectronvolt energies contains a considerable leptonic component. By modelling the gamma-ray halos powered by middle-aged pulsars in our Galaxy, taking into account the magnetic field configuration and the interstellar radiation field in the Galaxy, we demonstrate that the collective contribution of pulsar halos can account for the excess in the measured diffuse gamma-ray emission with respect to the predicted flux from cosmic-ray–interstellar medium interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the gamma-ray flux derived from neutrino measurement and the total flux of known Galactic gamma-ray sources excluding those with pulsar association.
Fig. 2: Comparison of the DGE fluxes derived from different analyses.
Fig. 3: Predicted gamma-ray intensity map in 25–100 TeV contributed by halos of middle-aged pulsars recorded in ATNF catalogue under the 2ID model.
Fig. 4: Predicted gamma-ray intensity map in 25–100 TeV contributed by halos of middle-aged pulsars recorded in ATNF catalogue under the anisotropic diffusion model.
Fig. 5: Expected contribution of DGE from pulsar halos and CR–ISM interactions.
Fig. 6: Galactic longitudinal gamma-ray profile contributed by pulsar halos.

Similar content being viewed by others

Data availability

Two templates for IceCube’s data analysis, the all-sky gamma-ray intensity maps predicted by CR–ISM interactions and two pulsar halo models are available at https://box.nju.edu.cn/d/a441e4a5b4cd4a71a2dd/. The data of the diffuse gamma-ray measured by LHAASO are available at ref. 13. Properties of the LHAASO sources and HESS sources can be found from refs. 12 and 50, respectively. The basic properties of the pulsars used in the calculation can be found at the ATNF pulsar catalogue via the link https://www.atnf.csiro.au/research/pulsar/psrcat/.

Code availability

GALPROP is available at https://galprop.stanford.edu. The codes generating figures in this study are available at https://box.nju.edu.cn/d/a441e4a5b4cd4a71a2dd/. The numerical code simulating the spectrum and 2D intensity profile of pulsar halos under two different models can be provided upon request.

References

  1. Fichtel, C. E. et al. High-energy gamma-ray results from the second small astronomy satellite. Astrophys. J. 198, 163–182 (1975).

    Article  ADS  Google Scholar 

  2. Hunter, S. D. et al. EGRET observations of the diffuse gamma-ray emission from the Galactic plane. Astrophys. J. 481, 205–240 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Ackermann, M. et al. Fermi-LAT observations of the diffuse γ-ray emission: implications for cosmic rays and the interstellar medium. Astrophys. J. 750, 3 (2012).

    Article  ADS  Google Scholar 

  4. Abdo, A. A. et al. A measurement of the spatial distribution of diffuse TeV gamma-ray emission from the Galactic plane with Milagro. Astrophys. J. 688, 1078–1083 (2008).

    Article  ADS  CAS  Google Scholar 

  5. Abramowski, A. et al. Diffuse Galactic gamma-ray emission with H.E.S.S. Phys. Rev. D 90, 122007 (2014).

    Article  ADS  Google Scholar 

  6. Bartoli, B. et al. Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ. Astrophys. J. 806, 20 (2015).

    Article  ADS  Google Scholar 

  7. Amenomori, M. et al. First detection of sub-PeV diffuse gamma rays from the Galactic disk: evidence for ubiquitous Galactic cosmic rays beyond PeV energies. Phys. Rev. Lett. 126, 141101 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Alfaro, R. et al. Galactic gamma-ray diffuse emission at TeV energies with HAWC data. Astrophys. J. 961, 104 (2024).

    Article  ADS  Google Scholar 

  9. Stecker, F. W. Neutral-pion-decay gamma rays from the galaxy and the interstellar gas content. Astrophys. J. 185, 499–504 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Strong, A. W. et al. Global cosmic-ray-related luminosity and energy budget of the Milky Way. Astrophys. J. Lett. 722, L58–L63 (2010).

    Article  ADS  CAS  Google Scholar 

  11. Lipari, P. & Vernetto, S. Diffuse Galactic gamma-ray flux at very high energy. Phys. Rev. D 98, 043003 (2018).

    Article  ADS  CAS  Google Scholar 

  12. Cao, Z. et al. The first LHAASO catalog of gamma-ray sources. Astrophys. J. Suppl. 271, 25 (2024).

    Article  ADS  Google Scholar 

  13. Cao, Z. et al. Measurement of ultra-high-energy diffuse gamma-ray emission of the Galactic plane from 10 TeV to 1 PeV with LHAASO-KM2A. Phys. Rev. Lett. 131, 151001 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Linden, T. & Buckman, B. J. Pulsar TeV halos explain the diffuse TeV excess observed by Milagro. Phys. Rev. Lett. 120, 121101 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Liu, R.-Y. & Wang, X.-Y. Origin of Galactic sub-PeV diffuse gamma-ray emission: constraints from high-energy neutrino observations. Astrophys. J. Lett. 914, L7 (2021).

    Article  ADS  CAS  Google Scholar 

  16. Zhang, P.-P., Qiao, B.-Q., Yuan, Q., Cui, S.-W. & Guo, Y.-Q. Ultrahigh-energy diffuse gamma-ray emission from cosmic-ray interactions with the medium surrounding acceleration sources. Phys. Rev. D 105, 023002 (2022).

    Article  ADS  CAS  Google Scholar 

  17. Vecchiotti, V., Zuccarini, F., Villante, F. L. & Pagliaroli, G. Unresolved sources naturally contribute to PeV gamma-ray diffuse emission observed by Tibet ASγ. Astrophys. J. 928, 19 (2022).

    Article  ADS  Google Scholar 

  18. Yan, K. & Liu, R.-Y. Constraints on the e± pair injection of pulsar halos: Implications from the Galactic diffuse multi-TeV gamma-ray emission. Phys. Rev. D 107, 103028 (2023).

    Article  ADS  CAS  Google Scholar 

  19. IceCube Collaboration et al. Observation of high-energy neutrinos from the Galactic plane. Science 380, 1338–1343 (2023).

    Article  ADS  Google Scholar 

  20. Atoyan, A. M. & Aharonian, F. A. On the mechanisms of gamma radiation in the Crab Nebula. Mon. Not. R. Astron. Soc. 278, 525–541 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Amato, E., Guetta, D. & Blasi, P. Signatures of high energy protons in pulsar winds. Astron. Astrophys. 402, 827–836 (2003).

    Article  ADS  CAS  Google Scholar 

  22. Acero, F. et al. Development of the model of Galactic interstellar emission for standard point-source analysis of Fermi Large Area Telescope data. Astrophys. J. Suppl. 223, 26 (2016).

    Article  ADS  Google Scholar 

  23. Gaggero, D., Grasso, D., Marinelli, A., Urbano, A. & Valli, M. The gamma-ray and neutrino sky: a consistent picture of Fermi-LAT, Milagro, and IceCube results. Astrophys. J. Lett. 815, L25 (2015).

    Article  ADS  Google Scholar 

  24. Fang, K., Gallagher, J. S. & Halzen, F. The Milky Way revealed to be a neutrino desert by the IceCube Galactic plane observation. Nat. Astron. 8, 241–246 (2023).

    Article  Google Scholar 

  25. Aharonian, F., Yang, R. & de Oña Wilhelmi, E. Massive stars as major factories of Galactic cosmic rays. Nat. Astron. 3, 561–567 (2019).

    Article  ADS  Google Scholar 

  26. Zhang, R., Huang, X., Xu, Z.-H., Zhao, S. & Yuan, Q. Galactic diffuse γ-ray emission from GeV to PeV energies in light of up-to-date cosmic-ray measurements. Astrophys. J. 957, 43 (2023).

    Article  ADS  Google Scholar 

  27. Vladimirov, A. E. et al. GALPROP WebRun: an internet-based service for calculating galactic cosmic ray propagation and associated photon emissions. Comput. Phys. Commun. 182, 1156–1161 (2011).

    Article  ADS  CAS  Google Scholar 

  28. Cataldo, M., Pagliaroli, G., Vecchiotti, V. & Villante, F. L. The TeV gamma-ray luminosity of the Milky Way and the contribution of H.E.S.S. unresolved sources to very high energy diffuse emission. Astrophys. J. 904, 85 (2020).

    Article  ADS  CAS  Google Scholar 

  29. Martin, P., Tibaldo, L., Marcowith, A. & Abdollahi, S. Population synthesis of pulsar wind nebulae and pulsar halos in the Milky Way. Predicted contributions to the very-high-energy sky. Astron. Astrophys. 666, A7 (2022).

    Article  ADS  CAS  Google Scholar 

  30. Dekker, A. et al. Diffuse ultra-high-energy gamma-ray emission from TeV halos. Preprint at https://arxiv.org/abs/2306.00051 (2023).

  31. Giacinti, G. et al. Halo fraction in TeV-bright pulsar wind nebulae. Astron. Astrophys. 636, A113 (2020).

    Article  CAS  Google Scholar 

  32. Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).

    Article  ADS  Google Scholar 

  33. Fang, K., Bi, X.-J., Yin, P.-F. & Yuan, Q. Two-zone diffusion of electrons and positrons from Geminga explains the positron anomaly. Astrophys. J. 863, 30 (2018).

    Article  ADS  Google Scholar 

  34. Profumo, S., Reynoso-Cordova, J., Kaaz, N. & Silverman, M. Lessons from HAWC pulsar wind nebulae observations: the diffusion constant is not a constant; pulsars remain the likeliest sources of the anomalous positron fraction; cosmic rays are trapped for long periods of time in pockets of inefficient diffusion. Phys. Rev. D 97, 123008 (2018).

    Article  ADS  CAS  Google Scholar 

  35. Liu, R.-Y., Yan, H. & Zhang, H. Understanding the multiwavelength observation of Geminga’s TeV halo: the role of anisotropic diffusion of particles. Phys. Rev. Lett. 123, 221103 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Jansson, R. & Farrar, G. R. A new model of the Galactic magnetic field. Astrophys. J. 757, 14 (2012).

    Article  ADS  Google Scholar 

  37. Jansson, R. & Farrar, G. R. The Galactic magnetic field. Astrophys. J. Lett. 761, L11 (2012).

    Article  ADS  Google Scholar 

  38. Popescu, C. C. et al. A radiation transfer model for the Milky Way: I. Radiation fields and application to high-energy astrophysics. Mon. Not. R. Astron. Soc. 470, 2539–2558 (2017).

    Article  ADS  CAS  Google Scholar 

  39. Ma, X.-H. et al. Chapter 1 LHAASO instruments and detector technology. Chinese Phys. C 46, 030001 (2022).

    Article  ADS  CAS  Google Scholar 

  40. Tauris, T. M. & Manchester, R. N. On the evolution of pulsar beams. Mon. Not. R. Astron. Soc. 298, 625–636 (1998).

    Article  ADS  Google Scholar 

  41. Actis, M. et al. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 32, 193–316 (2011).

    Article  ADS  Google Scholar 

  42. H. E. S. S. Collaboration et al. The H.E.S.S. Galactic plane survey. Astron. Astrophys. 612, A1 (2018).

    Article  Google Scholar 

  43. Fang, K. & Murase, K. Decomposing the origin of TeV-PeV emission from the Galactic plane: implications of multimessenger observations. Astrophys. J. Lett. 957, L6 (2023).

    Article  ADS  Google Scholar 

  44. Pacini, F. & Salvati, M. On the evolution of supernova remnants. evolution of the magnetic field, particles, content, and luminosity. Astrophys. J. 186, 249–266 (1973).

    Article  ADS  Google Scholar 

  45. de Jager, O. C. & Harding, A. K. The expected high-energy to ultra–high-energy gamma-ray spectrum of the Crab Nebula. Astrophys. J. 396, 161 (1992).

    Article  ADS  Google Scholar 

  46. Benbow, W. et al. A search for TeV gamma-ray emission from pulsar tails by VERITAS. Astrophys. J. 916, 117 (2021).

    Article  ADS  CAS  Google Scholar 

  47. Trotta, R. et al. Constraints on cosmic-ray propagation models from a global Bayesian analysis. Astrophys. J. 729, 106 (2011).

    Article  ADS  Google Scholar 

  48. Tang, X. & Piran, T. Positron flux and γ-ray emission from Geminga pulsar and pulsar wind nebula. Mon. Not. R. Astron. Soc. 484, 3491–3501 (2019).

    Article  ADS  CAS  Google Scholar 

  49. Delahaye, T., Lavalle, J., Lineros, R., Donato, F. & Fornengo, N. Galactic electrons and positrons at the Earth: new estimate of the primary and secondary fluxes. Astron. Astrophys. 524, A51 (2010).

    Article  ADS  Google Scholar 

  50. H. E. S. S. Collaboration et al. The population of TeV pulsar wind nebulae in the H.E.S.S. Galactic Plane Survey. Astron. Astrophys. 612, A2 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to L. Lu for the helpful discussion on IceCube’s results and K. Fang for the valuable comment. This work is supported by the National Natural Science Foundation of China (grant nos. U2031105, 12393852, 12220101003, 12333006) and the Project for Young Scientists in Basic Research of Chinese Academy of Sciences (grant no. YSBR-061).

Author information

Authors and Affiliations

Authors

Contributions

R.-Y.L. designed the study and led the writing of the paper. K.Y. modelled the emission of pulsar halos, and analysed the IceCube data and LHAASO data. R.Z. carried out the simulation of cosmic-ray propagation in the Galaxy and their radiation. C.-M.L. analysed the gamma-ray source contribution. Q.Y. and X.-Y.W. discussed the interpretation of the results. All the authors edited the paper.

Corresponding author

Correspondence to Ruo-Yu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Sabrina Casanova, Giulia Pagliaroli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Neutrino intensity map with the π0 template and KRA\({}_{\boldsymbol{\gamma }}^{\mathbf{5}}\) template.

(a) the all-sky intensity map with the π0 template. (b) the all-sky intensity map with the KRA\({}_{\gamma }^{5}\) template. (c) the intensity map in the same ROI of LHAASO’s DGE analysis, after removing the region out of the Galactic plane and masking the LHAASO source region, for the π0 template. (d) same as (c) but for the KRA\({}_{\gamma }^{5}\) template.

Extended Data Fig. 2 Distribution of the strength of the magnetic field in the Galactic plane.

The Galactic centre is located at (0,0). The positions of pulsars considered in this work are marked as blue dots. The boundary of the Galactic longitude of LHAASO’s ROI l = 15° and l = 235° are labeled for as dashed line for reference.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Liu, RY., Zhang, R. et al. Insights from LHAASO and IceCube into the origin of the Galactic diffuse teraelectronvolt–petaelectronvolt emission. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02221-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing