Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum computational supremacy

Abstract

The field of quantum algorithms aims to find ways to speed up the solution of computational problems by using a quantum computer. A key milestone in this field will be when a universal quantum computer performs a computational task that is beyond the capability of any classical computer, an event known as quantum supremacy. This would be easier to achieve experimentally than full-scale quantum computing, but involves new theoretical challenges. Here we present the leading proposals to achieve quantum supremacy, and discuss how we can reliably compare the power of a classical computer to the power of a quantum computer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A 2D lattice of superconducting qubits proposed as a way to demonstrate quantum supremacy.

References

  1. 1

    Preskill, J. Quantum computing and the entanglement frontier. Preprint at http://arXiv.org/abs/1203.5813 (2012)

  2. 2

    Papadimitriou, C. Computational Complexity (Addison-Wesley, 1994)

  3. 3

    Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Ann. Symp. on the Foundations of Computer Science (ed. Goldwasser, S. ) 124–134 (IEEE Computer Society, 1994)

  4. 4

    Georgescu, I., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    ADS  Article  Google Scholar 

  5. 5

    Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012)

    CAS  Article  Google Scholar 

  6. 6

    Häaner, T., Roetteler, M. & Svore, K. Factoring using 2n + 2 qubits with Toffoli based modular multiplication. Preprint at http://arXiv.org/abs/1611.07995 (2016)

  7. 7

    Cheuk, L. W. et al. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model. Science 353, 1260–1264 (2016)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  8. 8

    Terhal, B. M. & DiVincenzo, D. P. Adaptive quantum computation, constant-depth quantum circuits and Arthur-Merlin games. Quantum Inf. Comput. 4, 134–145 (2004). This paper gave the first complexity-theoretic argument that a simple class of quantum circuits should be hard to simulate classically

    MathSciNet  MATH  Google Scholar 

  9. 9

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Theory Comput. 9, 143–252 (2013). This seminal paper introduced the boson sampling problem

    MathSciNet  Article  Google Scholar 

  10. 10

    Shepherd, D. & Bremner, M. J. Temporally unstructured quantum computation. Proc. R. Soc. A 465, 1413–1439 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11

    Bremner, M. J ., Jozsa, R. & Shepherd, D. J. Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proc. R. Soc. Lond. A 467, 459–472 (2010). This paper gave evidence that instantaneous quantum polynomial-time (IQP) circuits are hard to simulate classically

    ADS  MathSciNet  Article  Google Scholar 

  12. 12

    Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Preprint at http://arXiv.org/abs/1608.00263 (2016). This paper described a proposal for a near-term quantum-supremacy experiment

  13. 13

    Lund, A., Bremner, M. & Ralph, T. Quantum sampling problems, BosonSampling and quantum supremacy. Preprint at http://arXiv.org/abs/1702.03061 (2017)

  14. 14

    Impagliazzo, R. & Paturi, R. On the complexity of k-SAT. J. Comput. Syst. Sci. 62, 367–375 (2001)

    MathSciNet  Article  Google Scholar 

  15. 15

    Cheeseman, P., Kanefsky, B. & Taylor, W. Where the really hard problems are. In Proc. 12th Int. Joint Conf. on Artificial Intelligence (IJCAI ’91) (eds Mylopoulos, J. & Reiter, R. ) 331–337 (Morgan Kaufmann, 1991)

  16. 16

    Mertens, S., Mézard, M. & Zecchina, R. Threshold values of random k-SAT from the cavity method. Random Struct. Algorithms 28, 340–373 (2006)

    Google Scholar 

  17. 17

    Levin, L. A. Average case complete problems. SIAM J. Comput. 15, 285–286 (1986)

    MathSciNet  Article  Google Scholar 

  18. 18

    Bremner, M. J., Montanaro, A. & Shepherd, D. J. Average-case complexity versus approximate simulation of commuting quantum computations. Phys. Rev. Lett. 117, 080501 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19

    Gao, X., Wang, S.-T. & Duan, L.-M. Quantum supremacy for simulating a translation-invariant Ising spin model. Phys. Rev. Lett. 118, 040502 (2017)

    ADS  Article  Google Scholar 

  20. 20

    Aaronson, S. & Chen, L. Complexity-theoretic foundations of quantum supremacy experiments. Preprint at http://arXiv.org/abs/1612.05903 (2016)

  21. 21

    Knill, E., Laflamme, R. & Zurek, W. Resilient quantum computation. Science 279, 342–345 (1998)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Fowler, A., Mariantoni, M., Martinis, J. & Cleland, A. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)

    ADS  Article  Google Scholar 

  24. 24

    Markov, I. L. & Shi, Y. Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38, 963–981 (2008)

    MathSciNet  Article  Google Scholar 

  25. 25

    Bravyi, S. & Gosset, D. Improved classical simulation of quantum circuits dominated by Clifford gates. Phys. Rev. Lett. 116, 250501 (2016)

    ADS  Article  Google Scholar 

  26. 26

    Morimae, T., Fujii, K. & Fitzsimons, J. On the hardness of classically simulating the one-clean-qubit model. Phys. Rev. Lett. 112, 130502 (2014)

    ADS  Article  Google Scholar 

  27. 27

    Bremner, M., Montanaro, A. & Shepherd, D. Achieving quantum supremacy with sparse and noisy commuting quantum circuits. Quantum 1, 8 (2017); available at https://doi.org/10.22331/q-2017-04-25-8.

    Article  Google Scholar 

  28. 28

    Fujii, K. & Tamate, S. Computational quantum-classical boundary of noisy commuting quantum circuits. Sci. Rep. 6, 25598 (2016)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Watrous, J. Quantum computational complexity. In Encyclopedia of Complexity and Systems Science 7174–7201 (Springer, 2009)

  30. 30

    Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004)

    ADS  Article  Google Scholar 

  31. 31

    Tichy, M., Mayer, K., Buchleitner, A. & Mølmer, K. Stringent and efficient assessment of boson-sampling devices. Phys. Rev. Lett. 113, 020502 (2014)

    ADS  Article  Google Scholar 

  32. 32

    Aaronson, S. & Arkhipov, A. BosonSampling is far from uniform. Quantum Inf. Comput. 14, 1383–1423 (2014)

    MathSciNet  Google Scholar 

  33. 33

    Spagnolo, N. et al. General rules for bosonic bunching in multimode interferometers. Phys. Rev. Lett. 111, 130503 (2013)

    ADS  Article  Google Scholar 

  34. 34

    Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Hangleiter, D., Kliesch, M., Schwarz, M. & Eisert, J. Direct certification of a class of quantum simulations. Preprint at http://arXiv.org/abs/1602.00703 (2016)

  36. 36

    Gosset, D., Terhal, B. & Vershynina, A. Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction. Phys. Rev. Lett. 114, 140501 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  37. 37

    Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum computation. In Proc. 50th Annual Symp. Foundations of Computer Science 517–526 (IEEE, 2009)

  38. 38

    Aharonov, D. & Vazirani, U. in Computability: Turing, Gödel, Church, and Beyond (MIT Press, 2013)

  39. 39

    Rahimi-Keshari, S., Ralph, T. C. & Caves, C. M. Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X 6, 021039 (2016)

    Google Scholar 

  40. 40

    Kalai, G. & Kindler, G. Gaussian noise sensitivity and BosonSampling. Preprint at http://arXiv.org/abs/1409.3093 (2014)

  41. 41

    Bravyi, S., DiVincenzo, D., Oliveira, R. & Terhal, B. The complexity of stoquastic local Hamiltonian problems. Quant. Inf. Comput. 8, 0361–0385 (2008)

    MathSciNet  MATH  Google Scholar 

  42. 42

    Dickson, N. G. et al. Thermally assisted quantum annealing of a 16-qubit problem. Nat. Commun. 4, 1903 (2013)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  43. 43

    Nishimura, K., Nishimori, H., Ochoa, A. J. & Katzgraber, H. G. Retrieving the ground state of spin glasses using thermal noise: performance of quantum annealing at finite temperatures. Phys. Rev. E 94, 032105 (2016)

    ADS  Article  Google Scholar 

  44. 44

    Farhi, E. & Harrow, A. W. Quantum supremacy through the quantum approximate optimization algorithm. Preprint at http://arXiv.org/abs/1602.07674 (2016)

  45. 45

    Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum Computation by Adiabatic Evolution. Tech. Rep. MIT-CTP-2936 (Massachusetts Institute of Technology, 2000)

  46. 46

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013)

    ADS  CAS  Article  Google Scholar 

  47. 47

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013)

    ADS  CAS  Article  Google Scholar 

  48. 48

    Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013)

    ADS  CAS  Article  Google Scholar 

  49. 49

    Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013)

    ADS  CAS  Article  Google Scholar 

  50. 50

    Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014)

    ADS  CAS  Article  Google Scholar 

  51. 51

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015)

    MathSciNet  CAS  Article  Google Scholar 

  52. 52

    Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017)

    ADS  CAS  Article  Google Scholar 

  53. 53

    Bentivegna, M. et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015)

    ADS  Article  Google Scholar 

  54. 54

    Han, Y., Hemaspaandra, L. & Thierauf, T. Threshold computation and cryptographic security. SIAM J. Comput. 26, 59–78 (1997)

    MathSciNet  Article  Google Scholar 

  55. 55

    Aaronson, S. Quantum computing, postselection, and probabilistic polynomial-time. Proc. R. Soc. A 461, 3473 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  56. 56

    Toda, S. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20, 865–877 (1991)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

A.W.H. was funded by NSF grants CCF-1629809 and CCF-1452616. A.M. was supported by EPSRC Early Career Fellowship EP/L021005/1. No new data were created during this study.

Author information

Affiliations

Authors

Contributions

A.W.H. and A.M. contributed equally to all aspects of this Insight Review.

Corresponding author

Correspondence to Ashley Montanaro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks B. Fefferman, S. Jordan, J. Preskill and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harrow, A., Montanaro, A. Quantum computational supremacy. Nature 549, 203–209 (2017). https://doi.org/10.1038/nature23458

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing