Lysis, lysogeny and virus–microbe ratios

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Examining putative relationships between three lysogeny indicators and log-transformed microbial cell density within coral reefs.
Figure 2: Virus density is nonlinearly related to microbial cell density in several dynamic models, with declining VMR as a function of increasing microbial cell density.

References

  1. 1

    Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Bergh, O., Børsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000)

    CAS  Article  Google Scholar 

  4. 4

    Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004)

    CAS  Article  Google Scholar 

  5. 5

    Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011)

    CAS  Article  Google Scholar 

  6. 6

    Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 15024 (2016)

    CAS  Article  Google Scholar 

  7. 7

    Paul, J. H. & Weinbauer, M. in Manual of Aquatic Viral Ecology (eds Wilhelm, S. W. et al.) 30–33 (ASLO, 2010)

  8. 8

    Payet, J. P. & Suttle, C. A. To kill or not to kill: the balance between lytic and lysogenic viral infections is driven by trophic status. Limnol. Oceanogr. 58, 465–474 (2013)

    ADS  Article  Google Scholar 

  9. 9

    Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016)

    CAS  Article  Google Scholar 

  10. 10

    Simpson, E. H. The interpretation of interaction in contingency tables. J. R. Stat. Soc. B 13, 248–251 (1950)

    Google Scholar 

  11. 11

    Weitz, J. S. & Dushoff, J. Alternative stable states in host-phage dynamics. Theor. Ecol. 1, 13–19 (2008)

    Google Scholar 

  12. 12

    Thingstad, T. F., Våge, S., Storesund, J. E., Sandaa, R. A. & Giske, J. A theoretical analysis of how strain-specific viruses can control microbial species diversity. Proc. Natl Acad. Sci. USA 111, 7813–7818 (2014)

    CAS  ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

J.S.W. wrote the paper with input from S.J.B., J.R.B., B.B.C. and J.D. J.S.W., S.J.B. and B.B.C. performed model simulations and analysis. J.S.W., S.J.B. and B.B.C. performed statistical analysis. J.S.W., S.J.B., J.R.B., B.B.C. and J.D. analysed model and empirical data.

Corresponding author

Correspondence to Joshua S. Weitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and Supplementary Tables 1-3. (PDF 122 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weitz, J., Beckett, S., Brum, J. et al. Lysis, lysogeny and virus–microbe ratios. Nature 549, E1–E3 (2017). https://doi.org/10.1038/nature23295

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing